基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,网络安全威胁日益增多,数据驱动的安全智能分析成为网络安全领域研究的热点.特别是以知识图谱为代表的人工智能技术可为多源异构威胁情报数据中的复杂网络攻击检测和未知网络攻击检测提供支撑.网络安全实体识别是威胁情报知识图谱构建的基础.开放网络文本数据中的安全实体构成非常复杂,导致传统的深度学习方法难以准确识别.在BERT (pre-training of deep bidirectional transformers)预训练语言模型的基础上,提出一种基于残差空洞卷积神经网络和条件随机场的网络安全实体识别模型BERT-RDCNN-CRF.通过BERT模型训练字符级特征向量表示,结合残差卷积与空洞神经网络模型有效提取安全实体的重要特征,最后通过CRF获得每一个字符的BIO标注.在所构建的大规模网络安全实体标注数据集上的实验表明,所提方法取得了比LSTM-CRF模型、BiLSTM-CRF模型和传统的实体识别模型更好的效果.
推荐文章
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
基于卷积神经网络的ECG信号识别方法
ECG信号识别
短时傅里叶变换
卷积神经网络
支持向量机
基于并行残差卷积神经网络的多种树叶分类
树叶分类
卷积神经网络
残差学习
图像特征提取
批量归一化
测试效果对比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于残差空洞卷积神经网络的网络安全实体识别方法
来源期刊 网络与信息安全学报 学科 工学
关键词 网络安全 实体识别 残差连接 空洞卷积神经网络 BERT预训练模型
年,卷(期) 2020,(5) 所属期刊栏目 学术论文
研究方向 页码范围 126-138
页数 13页 分类号 TP391
字数 语种 中文
DOI 10.11959/j.issn.2096-109x.2020009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于淼 中国科学院信息工程研究所 20 134 6.0 11.0
2 周燕 中国科学院信息工程研究所 70 764 14.0 25.0
3 郭春 中国科学院信息工程研究所 8 41 3.0 6.0
4 谢博 中国科学院信息工程研究所 1 0 0.0 0.0
5 申国伟 中国科学院信息工程研究所 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (39)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络安全
实体识别
残差连接
空洞卷积神经网络
BERT预训练模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络与信息安全学报
双月刊
2096-109X
10-1366/TP
16开
北京市丰台区成寿路11号邮电出版大厦8层
2015
chi
出版文献量(篇)
525
总下载数(次)
6
总被引数(次)
1380
论文1v1指导