基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对单通道信号不能全面提取旋转机械的振动信息,为了从强背景噪声中准确提取出滚动轴承的微弱故障特征,提出了一种全矢频带熵(FV-FBE)的滚动轴承故障诊断算法.该方法采用短时傅里叶变换计算频带熵(FBE),根据FBE最小原则自适应设计双通道信号的带通滤波器带宽和中心频率,对滤波后的双通道信号采用全矢Hilbert包络解调,得到全矢包络谱进行滚动轴承的故障识别.实验结果表明:FV-FBE算法可以全面准确地提取滚动轴承故障特征,优于谱峭度算法得到的全矢包络谱,抗干扰能力强.
推荐文章
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于小波变换的滚动轴承故障诊断分析
小波分析
滚动轴承
故障诊断
基于MSCNN与STFT的滚动轴承故障诊断研究
故障诊断
滚动轴承
多尺度卷积神经网络
短时傅里叶变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FV-FBE的滚动轴承故障诊断研究
来源期刊 郑州大学学报(工学版) 学科 工学
关键词 全矢谱 频带熵 故障诊断 滚动轴承
年,卷(期) 2020,(5) 所属期刊栏目 机械工程
研究方向 页码范围 82-86
页数 5页 分类号 TH133|TH17
字数 语种 中文
DOI 10.13705/j.issn.1671-6833.2020.03.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (6)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
全矢谱
频带熵
故障诊断
滚动轴承
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(工学版)
双月刊
1671-6833
41-1339/T
大16开
河南省郑州市科学大道100号
36-232
1980
chi
出版文献量(篇)
3118
总下载数(次)
0
总被引数(次)
21814
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导