基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人体关节点数据可以精确表征人体运动的三维信息,卷积神经网络能够提取二维图像中的深层次特征,因此将关节点数据与卷积神经网络结合用于双人交互动作识别具有很好的研究意义.目前将两者结合的方法中,多数不能充分利用关节点的时空关系,导致识别率不高.提出一种新的关节点数据的时空特征表示方法,即关节点连接历史图.首先将关节点数据中的关节点按照人体骨架顺序连接得到关节点连接图,然后将每帧关节点连接图中的关节点和关节点连线按照时间顺序谱编码得到关节点连接历史图,最后将其馈送到卷积神经网络得到最终的识别结果.实验结果表明,关节点连接历史图与CNN结合可以准确识别双人交互动作,在国际公开的SBU Kinect interaction数据库测试中达到94.12%的识别率,充分证明了所提出算法的有效性.
推荐文章
关节点时空信息融合降维的人体动作识别方法
卷积神经网络
高分辨率网络
人体动作识别
KTH数据集
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 关节点连接历史图与卷积神经网络结合的双人交互动作识别
来源期刊 沈阳航空航天大学学报 学科 工学
关键词 关节点数据 双人交互动作识别 关节点连接历史图 卷积神经网络
年,卷(期) 2020,(6) 所属期刊栏目 信息科学与工程
研究方向 页码范围 55-60
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.2095-1248.2020.06.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (9)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
关节点数据
双人交互动作识别
关节点连接历史图
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
沈阳航空航天大学学报
双月刊
2095-1248
21-1576/V
大16开
辽宁省沈阳市沈北新区道义南大街37号
1984
chi
出版文献量(篇)
2881
总下载数(次)
10
总被引数(次)
11933
论文1v1指导