基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统基于贝叶斯模型的显著性检测算法存在准确率不理想的问题,提出了一种基于多尺度的贝叶斯模型显著性检测算法.通过超像素分割算法(SLIC)将原图分割成不同尺度的超像素,根据超像素边界信息得到背景种子,进而通过距离计算和多尺度融合得到背景先验;对原图进行颜色增强,采用Harris算子对增强图进行检测角点求得凸包,融合不同尺度下的超像素得到凸包先验;融合背景先验和凸包先验得到最终先验;利用颜色直方图和凸包计算似然概率;将最终先验和似然概率通过贝叶斯模型计算显著图.在公开数据集MSRA1000、ECSSD上与多种传统算法进行准确率和召回率对比,该算法有更好的表现.
推荐文章
基于HVS的多尺度显著性检测算法
人类视觉系统
多尺度
主成分分析
显著性检测
图像分析
基于双层多尺度神经网络的显著性对象检测算法
显著性对象检测
深度学习
深度卷积网络
条件随机场
基于视觉双通路与贝叶斯模型的烟雾检测方法
疑似烟雾区域
视觉双通路
贝叶斯概率融合
基于贝叶斯理论的自适应显著性检测
自适应
显著性检测
贝叶斯理论
阈值算法
滑动窗口
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度的贝叶斯模型显著性检测
来源期刊 计算机工程与应用 学科 工学
关键词 显著性检测 多尺度 背景种子 先验概率 贝叶斯模型
年,卷(期) 2020,(11) 所属期刊栏目 图形图像处理
研究方向 页码范围 207-213
页数 7页 分类号 TP391.41
字数 4709字 语种 中文
DOI 10.3778/j.issn.1002-8331.1905-0169
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 段先华 江苏科技大学计算机学院 42 192 9.0 11.0
2 鲁文超 江苏科技大学计算机学院 5 1 1.0 1.0
3 常振 江苏科技大学计算机学院 2 0 0.0 0.0
4 彭媛 江苏科技大学计算机学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (16)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
显著性检测
多尺度
背景种子
先验概率
贝叶斯模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导