基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于双向长短时记忆网络(long short-term memory,LSTM)的实时人体姿势识别方法.将OpenPose作为人体姿态估计模块获取人体的二维关节点数据,根据数据缺失情况判断人体是否处于遮挡状态.对于非遮挡情况,构建基于双向LSTM的分类器,将初始的二维关节点信息送入分类器进行人体姿势识别;对于遮挡状态,利用深度摄像机内参进行三维映射,构建躯干向量和关节角度,使用主成分分析对上述高维特征进行处理后送入分类器进行人体姿势识别.在KTH数据集以及实验室收集的包含5种人体姿势的数据集上进行验证,结果表明,该算法在非遮挡情况下准确率较传统模型以及深度学习模型分别取得了2.63%和1.08%的提升.在遮挡情况下准确率较传统模型取得了5.6%的提升.实现了在复杂环境下的人体姿势识别.
推荐文章
结合LSTM的双流卷积人体行为识别
LSTM
双流卷积
人体行为识别
卷积神经网络
光流信息
模型融合
基于三维卷积与双向LSTM的行为识别研究
行为识别
三维卷积
双向LSTM
双中心loss
联合训练
计算机视觉
基于深度神经网络的实时人脸识别
人脸识别
深度神经网络
实时性
复杂环境下的运动人体骨架提取算法
骨架提取
区域背景建模
卡尔曼滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双向LSTM的复杂环境下实时人体姿势识别
来源期刊 仪器仪表学报 学科 工学
关键词 双向LSTM 姿态估计 姿势识别 高维数据处理
年,卷(期) 2020,(3) 所属期刊栏目 人机融合与人工智能
研究方向 页码范围 192-201
页数 10页 分类号 TP391|TH789
字数 语种 中文
DOI 10.19650/j.cnki.cjsi.J1905930
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐昱琳 23 129 6.0 10.0
2 周意乔 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (11)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(18)
  • 参考文献(0)
  • 二级参考文献(18)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
双向LSTM
姿态估计
姿势识别
高维数据处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
论文1v1指导