基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有多源入侵检测设备产生的报警数据中存在大量冗余和相似报警,导致检测精度较低的问题,提出一种基于模糊聚类的报警数据并行融合方法.该方法采用模糊聚类的思想融合多源报警数据,通过最大最小距离算法改进模糊C均值聚类,避免聚类结果陷入局部最优解,同时利用MapReduce分布式计算模型提高处理效率.在真实入侵检测环境中的实验结果显示,通过该方法聚类后的数据融合率达到87.88%,证明该方法可有效去除误报警,提高检测精度.
推荐文章
基于数据密度感知的非平衡数据模糊聚类方法
模糊聚类
分布密度
非平衡数据
基于抽样融合改进的大数据聚类方法
校园网络优化
大数据聚类
leaders算法
多样本集聚类融合
针对无网格并行计算的基于模糊均值聚类的分区方法
并行计算
分区
均匀模糊均值聚类
无网格
回归几何二分法
基于MapReduce并行化计算的大数据聚类算法
大数据
MapReduce
并行计算
数据聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊聚类的报警数据并行融合方法
来源期刊 桂林电子科技大学学报 学科 工学
关键词 入侵检测 报警融合 模糊聚类 MapReduce
年,卷(期) 2020,(4) 所属期刊栏目 计算机与自动化
研究方向 页码范围 310-315
页数 6页 分类号 TP393
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (21)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
入侵检测
报警融合
模糊聚类
MapReduce
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
桂林电子科技大学学报
双月刊
1673-808X
45-1351/TN
大16开
广西桂林市金鸡路1号
1981
chi
出版文献量(篇)
2598
总下载数(次)
1
总被引数(次)
11679
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导