基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对以往基于表示的分类(RBC)方法在类别数较多的数据集上性能不佳的问题,提出了一种自适应多阶段线性重构表示的分类(MPRBC)方法.在每一阶段,首先得到L1范数或L2范数正则化的重构表示系数,然后将表示系数按类求和,根据和的大小来选取相似类,并保留相似类中的全部样本作为下一阶段的训练样本.该策略最终产生具有高分类置信度的稀疏类概率分布,根据类系数的大小自适应选择相似的类,提高了分类计算的效率.实验结果表明,该方法分类性能优于其他RBC方法,特别是在类别数较多的数据集上性能提升明显,并且CPU时间保持相对较低水平.
推荐文章
多阶段建模过程中可重用数学模型表示方法
模型表示
模型重用
模型驱动体系结构
变量转换关系
数学标记语言
动态动作行为模型
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
基于离散余弦变换和稀疏表示的人脸识别
人脸识别
离散余弦变换
稀疏表示
词袋
局部特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自适应多阶段线性重构表示分类的人脸识别
来源期刊 智能系统学报 学科 工学
关键词 人脸识别 自适应 多阶段 线性重构 表示系数 分类方法 稀疏表示 协同表示 模式识别
年,卷(期) 2020,(5) 所属期刊栏目 机器感知与模式识别
研究方向 页码范围 964-971
页数 8页 分类号 TP391.4
字数 语种 中文
DOI 10.11992/tis.201904002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈秀宏 90 480 12.0 17.0
2 钱剑滨 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (54)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
自适应
多阶段
线性重构
表示系数
分类方法
稀疏表示
协同表示
模式识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导