基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提升说话人识别技术在复杂噪声环境下的识别性能,提出了一种基于高斯均值矩阵和卷积神经网络的鲁棒性说话人识别方法,应用于纯净语音训练出的模型上测试含噪语音的场景.其中高斯均值矩阵是采用最大后验概率(MAP)对传统的梅尔频率倒谱系数(MFCC)特征进行自适应操作得到的,这一操作增加了帧与帧之间的关联性,使特征携带更丰富的说话人身份信息.同时采用卷积神经网络进一步对帧层面的信息进行对准,并从数据中学习到更有利于说话人识别的特征表示,从而提升说话人识别的鲁棒性.实验结果表明在Libri语音数据集上,所提出方法的鲁棒性优于GMM-UBM和GSV-SVM算法.
推荐文章
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于代价敏感卷积神经网络的人脸年龄识别方法
卷积神经网路
人脸年龄识别
误分类代价
代价敏感性
期望类最大原则
基于卷积神经网络的ECG信号识别方法
ECG信号识别
短时傅里叶变换
卷积神经网络
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的鲁棒性说话人识别方法
来源期刊 华中科技大学学报(自然科学版) 学科 工学
关键词 说话人识别 鲁棒性 卷积神经网络 高斯均值矩阵 最大后验概率
年,卷(期) 2020,(6) 所属期刊栏目 信息与控制工程
研究方向 页码范围 39-44
页数 6页 分类号 TN912.34
字数 语种 中文
DOI 10.13245/j.hust.200607
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孔祥斌 华中科技大学机械科学与工程学院 6 25 4.0 5.0
2 曾春艳 湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室 17 18 3.0 3.0
3 王志锋 华中师范大学数字媒体技术系 19 67 5.0 7.0
4 马超峰 湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (17)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
说话人识别
鲁棒性
卷积神经网络
高斯均值矩阵
最大后验概率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
总被引数(次)
88536
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导