基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的卷积神经网络对小样本分类易产生过拟合等问题,在卷积神经网络( CNN)和支持向量机( SVM)融合模型的基础上,提出对CNN网络结构提取的特征进行归一化处理,提高泛化能力,并将其应用到交通标志识别.该方法构建了一种CNN-SVM模型,将卷积神经网络和支持向量机结合起来,使用从ImageNet数据集初始化的网络进行特定域的微调,截取网络内层来提取交通标志图像特征,并对特征进行归一化处理,最后采用SVM进行识别,从而有效解决交通标志分类过拟合问题.仿真结果表明,通过CNN内层建立的特征映射模型,所传递的特征经过归一化处理后,在交通标志分类任务中具有良好的特征表示能力,较好地提升了SVM分类性能,表现出更好的分类精度以及泛化性能.
推荐文章
基于Gabor特征提取和SVM交通标志识别方法研究
交通标志识别
图像灰度化
图像增强
Gabor特征提取
主成分分析
支持向量机
基于多尺度卷积神经网络的交通标志识别
模式识别系统
交通标志识别
多尺度卷积神经网络
SoftMax分类器
基于深度学习的交通标志识别算法研究
交通标志识别
深度学习
卷积神经网络
TSR_Lenet
算法融合
实验对比
基于高稳定SURF特征的交通标志识别
交通标志
目标识别
SURF特征
稳定性
权值计分策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CNN和SVM融合的交通标志识别
来源期刊 计算机技术与发展 学科 工学
关键词 CNN SVM 迁移学习 归一化 交通标志识别
年,卷(期) 2020,(6) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 7-12
页数 6页 分类号 TP391
字数 5633字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.06.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁爱玲 长安大学信息工程学院 19 177 7.0 13.0
2 王新美 长安大学信息工程学院 1 0 0.0 0.0
3 雷梦宁 长安大学信息工程学院 1 0 0.0 0.0
4 康盟 长安大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (10)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CNN
SVM
迁移学习
归一化
交通标志识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导