基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高短时交通流量预测精度及预测效率,首先提出一种PSO改进算法(MHPSO),把PSO种群结构设置为多层,将种群中上层粒子作为下层粒子的吸引粒子,将吸引粒子对粒子本身的吸引能力考虑在内,修改粒子速度更新方程以增强种群粒子之间的交互能力,从而有效地避免其陷入局部最优,提升算法的寻优速度及精度;然后利用MHPSO对GRU神经网络的参数进行优化;最后利用基于MHPSO优化的GRU神经网络构建短期交通流预测模型.实验结果表明:基于MHPSO优化的GRU神经网络模型在短时交通流预测中具有更高的预测精度,预测效率得到显著提升.
推荐文章
基于混沌粒子群算法的神经网络短时交通流预测
交通流量
预测
混沌粒子群
神经网络
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
基于小波分析与神经网络的交通流短时预测方法
小波分析
小波神经元网络
交通流
短时预测
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
智能交通
短时交通流预测
深度学习
CNN
BiLSTM
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MHPSO优化GRU神经网络的短时交通流预测
来源期刊 大连交通大学学报 学科
关键词 交通流预测 MHPSO GRU神经网络
年,卷(期) 2020,(1) 所属期刊栏目 交通科学与工程
研究方向 页码范围 12-17
页数 6页 分类号
字数 4267字 语种 中文
DOI 10.13291/j.cnki.djdxac.2020.01.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王德广 大连交通大学软件学院 28 160 6.0 12.0
2 黄浩洋 大连交通大学软件学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (11)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(13)
  • 参考文献(2)
  • 二级参考文献(11)
2018(7)
  • 参考文献(5)
  • 二级参考文献(2)
2020(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通流预测
MHPSO
GRU神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连交通大学学报
双月刊
1673-9590
21-1550/U
大16开
大连市沙河口区黄河路794号
1980
chi
出版文献量(篇)
3012
总下载数(次)
3
总被引数(次)
12659
论文1v1指导