基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为改进目前传统损伤识别方法对桥梁局部小损伤识别能力较弱的不足,提出利用深度学习方法中的卷积神经网络对桥梁损伤进行统计模式识别.根据卷积神经网络对损伤特征向量的需求,将车桥耦合振动下的原始结构响应信号进行小波包滤波和重构,之后通过递归分析获取不同损伤工况的递归图,将其作为新型的损伤特征图像作为卷积神经网络的输入.在此基础上提出基于卷积神经网络和递归图的桥梁结构损伤识别计算流程和方法.对一座连续梁桥进行不同位置和程度的损伤模拟,提取小波包频带能量及递归图等损伤特征向量,并进行基于多种统计模式识别算法的损伤识别.结果表明:与其他特征向量相比,递归图蕴含更丰富的损伤信息;与支持向量机和BP神经网络等传统统计模式识别方法相比,卷积神经网络能够通过逐层智能学习实现更准确的特征自动提取和区分,从而实现损伤位置和损伤程度的更精准识别.
推荐文章
多尺度卷积递归神经网络的RGB-D物体识别
多尺度
3D曲面法线
递归神经网络
RGB-D物体识别
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于遗传优化神经网络算法的桥梁结构损伤识别
人工神经网络
遗传算法
桥梁损伤识别
抗弯刚度
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络和递归图的桥梁损伤智能识别
来源期刊 应用基础与工程科学学报 学科 工学
关键词 卷积神经网络 深度学习 递归图 小波包 小损伤 损伤识别 智能识别
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 966-980
页数 15页 分类号 TU375.3|TU311.3
字数 语种 中文
DOI 10.16058/j.issn.1005-0930.2020.04.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何浩祥 98 767 16.0 25.0
2 王玮 4 14 2.0 3.0
3 黄磊 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (96)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(8)
  • 参考文献(2)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(10)
  • 参考文献(1)
  • 二级参考文献(9)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(7)
  • 参考文献(4)
  • 二级参考文献(3)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
深度学习
递归图
小波包
小损伤
损伤识别
智能识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用基础与工程科学学报
双月刊
1005-0930
11-3242/TB
16开
北京大学老地学楼110室
1993
chi
出版文献量(篇)
2121
总下载数(次)
3
总被引数(次)
21474
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导