基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视频行人重识别是一项应用非常广的计算机视觉任务.目前的视频行人重识别方法通常是基于监督学习的,该方法需要手工标记大量的数据,代价非常高且并不适用于现实场景.本文提出了一种从底向上的基于多样性约束和离散度分层聚类的无监督视频行人重识别方法.该方法首先将每个样本当作是一个不同的类,然后结合类内间离散度进行从底向上的分层聚类,类间和类内离散度都小的类别将被优先合并,同时在聚类准则中加入一项多样性约束来平衡每类中的样本数量,最后,利用线性变化的特征存储器动态更新模型.在Mars和DukeMTMC?VideoReID两个大型视频数据集上的实验结果表明,相比于目前先进的无监督视频行人重识别方法,本文方法在性能上有一定的提升.
推荐文章
基于半监督聚类的微视频标注方法
微视频标注
运动目标检测
事件驱动
半监督聚类
基于深度学习的行人重识别研究综述
行人重识别
监督学习
半监督学习
弱监督学习
无监督学习
基于无监督学习的行人检测算法
行人检测
无监督
稀疏编码
非线性变换
非极大值抑制
基于K-均值聚类的无监督的特征选择方法
特征选择
相关性分析
无监督学习
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多样性约束和离散度分层聚类的无监督视频行人重识别
来源期刊 南京航空航天大学学报 学科 工学
关键词 无监督视频行人重识别 离散度 聚类 特征存储器 多样性约束
年,卷(期) 2020,(5) 所属期刊栏目
研究方向 页码范围 752-759
页数 8页 分类号 TP391.41
字数 语种 中文
DOI 10.16356/j.1005⁃2615.2020.05.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (7)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无监督视频行人重识别
离散度
聚类
特征存储器
多样性约束
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京航空航天大学学报
双月刊
1005-2615
32-1429/V
大16开
南京市御道街29号1016信箱
28-140
1956
chi
出版文献量(篇)
3509
总下载数(次)
9
总被引数(次)
36115
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导