基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对复杂场景中的人体行为识别困难的问题,提出了一种基于组合特征和SVM的行为识别算法.该算法使用光流特征、HOG特征、重心特征和3D SIFT特征构成的组合特征来描述人体的各种行为;使用一对一的方式训练SVM分类器对提取出的特征进行分类,并以投票的方式得到具体的行为类别.使用包含4个场景的KTH数据集进行仿真.结果表明,所提出的算法能适应各种复杂环境,且相比只采用单一特征的识别算法具有更高的分类精度.
推荐文章
基于投影和质心运动特征的人体行为识别算法
主成分分析
位置与速度向量
最近邻分类器
人体行为识别
基于LBP特征的人体行为识别算法研究
行为识别
深度图像
LBP特征
支持向量机
基于关键点梯度特征描述的人体行为识别算法
关键点检测
梯度位置朝向直方图
人体行为识别
支持向量机
基于视频的人体动作识别算法综述
动作识别
RGB数据
RGB-D数据
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于组合特征和SVM的视频中人体行为识别算法
来源期刊 沈阳工业大学学报 学科 工学
关键词 行为识别 光流 方向梯度直方图 重心 3D SIFT特征 支持向量机 KTH数据集 行为分类
年,卷(期) 2020,(6) 所属期刊栏目 信息科学与工程
研究方向 页码范围 665-669
页数 5页 分类号 TP391.41
字数 语种 中文
DOI 10.7688/j.issn.1000-1646.2020.06.09
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (66)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(17)
  • 参考文献(1)
  • 二级参考文献(16)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(7)
  • 参考文献(3)
  • 二级参考文献(4)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行为识别
光流
方向梯度直方图
重心
3D SIFT特征
支持向量机
KTH数据集
行为分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
沈阳工业大学学报
双月刊
1000-1646
21-1189/T
大16开
沈阳市铁西区南十三路1号
8-165
1964
chi
出版文献量(篇)
2983
总下载数(次)
5
总被引数(次)
22269
论文1v1指导