基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前人为探察土地资源利用情况的任务繁重、办事效率低下等问题,提出了一种基于深度卷积神经网络的建筑物变化检测方法,利用高分辨率遥感图像实时检测每个区域新建与扩建的建筑物,以方便对土地资源进行有效管理.本文受超列(Hypercolumn)和FlowNet中的细化(Refinement)结构启发,将细化和其他改进应用到U-Net,提出FlowS-Unet网络.首先对遥感图像裁剪、去噪、标注语义制作数据集,将该数据集划分为训练集和测试集,对训练集进行数据增强,并根据训练集图像的均值和方差对所有图像进行归一化;然后将训练集输入集成了多尺度交叉训练、多重损失计算、Adam优化的全卷积神经网络FlowS-Unet中进行训练;最后对网络模型的预测结果进行膨胀、腐蚀以及孔洞填充等后处理得到最终的分割结果.本文以人工分割结果为参考标准进行对比测试,用FlowS-Unet检测得到的F1分数高达0.943,明显优于FCN和U-Net的预测结果.实验结果表明,FlowS-Unet能够实时准确地将新建与扩建的建筑物变化检测出来,并且该模型也可扩展到其他类似的图像检测问题中.
推荐文章
基于图像匹配的遥感图像建筑物变化检测
高空间分辨率
遥感图像
局部图像匹配
建筑物变化检测
最稳定极值区域
基于模糊综合评判的遥感图像变化检测方法
遥感图像
变化检测
模糊C均值聚类
模糊综合评判
遥感图像建筑物识别及变化检测方法
识别
变化检测
配准
SAR 图像
全色图像
基于遥感影像的变化检测技术
变化检测
图像配准
遥感影像
Harris算子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FlowS-Unet的遥感图像建筑物变化检测
来源期刊 自动化学报 学科
关键词 FlowS-Unet 建筑物变化检测 全卷积神经网络 多尺度交叉训练 多重损失
年,卷(期) 2020,(6) 所属期刊栏目 论文与报告
研究方向 页码范围 1291-1300
页数 10页 分类号
字数 7492字 语种 中文
DOI 10.16383/j.aas.c180122
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 竺乐庆 浙江工商大学计算机与信息工程学院 15 183 7.0 13.0
2 顾炼 浙江工商大学计算机与信息工程学院 1 0 0.0 0.0
3 许诗起 浙江工商大学计算机与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (51)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(7)
  • 参考文献(2)
  • 二级参考文献(5)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FlowS-Unet
建筑物变化检测
全卷积神经网络
多尺度交叉训练
多重损失
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
论文1v1指导