基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,无人机入侵的事件经常发生,无人机跌落碰撞的事件也屡见不鲜,在人群密集的地方容易引发安全事故,所以无人机监测是目前安防领域的研究热点.虽然目前有很多种无人机监测方案,但大多成本高昂,实施困难.在5G背景下,针对此问题提出了一种利用城市已有的监控网络去获取数据的方法,基于深度学习的算法进行无人机目标检测,进而识别无人机,并追踪定位无人机.该方法采用改进的YOLOv3模型检测视频帧中是否存在无人机,YOLOv3算法是YOLO (You only look once,一次到位)系列的第三代版本,属于one-stage目标检测算法这一类,在速度上相对于two-stage类型的算法有着明显的优势.YOLOv3输出视频帧中存在的无人机的位置信息.根据位置信息用PID (Proportion integration differentiation,比例积分微分)算法调节摄像头的中心朝向追踪无人机,再由多个摄像头的参数解算出无人机的实际坐标,从而实现定位.本文通过拍摄无人机飞行的照片、从互联网上搜索下载等方式构建了数据集,并且使用labelImg工具对图片中的无人机进行了标注,数据集按照无人机的旋翼数量进行了分类.实验中采用按旋翼数量分类后的数据集对检测模型进行训练,训练后的模型在测试集上能达到83.24%的准确率和88.15%的召回率,在配备NVIDIA GTX 1060的计算机上能达到每秒20帧的速度,可实现实时追踪.
推荐文章
基于YOLOv3和ROS系统的无人机距离检测
无人机
距离检测
YOLOv3
ROS系统
基于USRP与YOLOv3算法的信号采集与识别设计
射频信号
频谱图数据
数据集训练
信号采集
频谱图识别
模数转换
一种基于YOLOv3算法的车牌识别系统
车牌识别系统
图像采集
车牌定位
车牌字符识别
自适应边缘优化的改进YOLOV3目标识别算法
目标检测
零件识别
卷积神经网络
YOLOV3
PSO
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于YOLOv3的无人机识别与定位追踪
来源期刊 工程科学学报 学科 工学
关键词 5G 目标检测 YOLOv3 PID 无人机追踪
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 463-468
页数 6页 分类号 TP391.41
字数 3160字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 洪韬 北京航空航天大学电子信息工程学院 26 51 4.0 5.0
2 陶磊 北京航空航天大学电子信息工程学院 1 1 1.0 1.0
3 钞旭 北京航空航天大学电子信息工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
5G
目标检测
YOLOv3
PID
无人机追踪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程科学学报
月刊
2095-9389
10-1297/TF
大16开
北京海淀区学院路30号
1955
chi
出版文献量(篇)
4988
总下载数(次)
18
论文1v1指导