基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对全卷积孪生网络目标跟踪算法(Siamfc)在严重遮挡、旋转、光照变化、尺度变化等情况下容易出现跟踪失败的问题,提出了一种融合扰动感知模型的孪生神经网络目标跟踪算法.将孪生神经网络提取到的低层结构特征与高层语义特征进行有效融合,以提高特征的表征能力;利用模板自适应策略在线更新模板,以提高算法在遮挡和旋转等情况下跟踪的精确度.与此同时,将基于颜色直方图特征的扰动感知模型引入到算法中,通过加权融合的方式获得目标响应得分图,以此估计出目标的位置,并利用相邻帧尺度自适应策略估计出目标最佳尺度.为验证本文算法的效果,利用公开数据集测试所提算法性能,并与多种跟踪方法进行对比.实验结果表明:在2015目标跟踪标准测试数据集下本文所提算法总体跟踪精确度为0.945,总体成功率为0.929,相比Siamfc算法分别提高了2.9%和2.8%,在无人机航拍测试数据集中本文所提算法也具备较高的精确度与成功率,获得的跟踪效果良好.
推荐文章
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
基于小波神经网络的目标跟踪的研究
小波神经网络
机动多目标
跟踪
基于轻量化神经网络的目标识别跟踪算法研究
深度学习
卷积神经网络
YOLO
KCF跟踪算法
感知哈希算法
引入再检测机制的孪生神经网络目标跟踪
目标跟踪
孪生神经网络
再检测
生成式模型
高置信度更新
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合扰动感知模型的孪生神经网络目标跟踪
来源期刊 光学学报 学科 工学
关键词 机器视觉 孪生神经网络 扰动感知模型 自适应模板 特征融合
年,卷(期) 2020,(4) 所属期刊栏目 机器视觉
研究方向 页码范围 114-125
页数 12页 分类号 TP391.41
字数 语种 中文
DOI 10.3788/AOS202040.0415002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (1)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
孪生神经网络
扰动感知模型
自适应模板
特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学学报
半月刊
0253-2239
31-1252/O4
大16开
上海市嘉定区清河路390号(上海800-211信箱)
4-293
1981
chi
出版文献量(篇)
11761
总下载数(次)
35
论文1v1指导