基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
特征匹配是实现图像配准的重要手段,然而特征匹配中往往存在大量的误匹配,对于存在非刚性形变和大位移运动的图像序列尤为严重;如何从初始匹配结果中找到准确可靠的匹配点集,是提升图像配准性能的关键.为解决上述问题,首先根据图像的空间和色彩相似性,利用改进的超像素分割算法对图像进行分割;分割后的超像素块在空间上紧密相连,严格遵循图像轮廓边缘,且在同一区域内的颜色纹理基本趋于一致,可保证内部特征点具有相同或一致的运动趋势;同时,采用ORB算子对图像进行特征提取与描述,并利用暴力匹配算法得到初始匹配点集.其次,在超像素运动一致性约束下,提出了一种基于超像素运动统计模型的误匹配去除算法.通过建立超像素网格统计模型,将初始匹配坐标分配至相应的超像素区域,利用累加器计算出每个超像素对的匹配度,将初始匹配的概率分布特性转换为统计特性.最后,根据超像素匹配度的差异,计算出正确匹配的掩膜图像,实现了误匹配点的自动识别和剔除.仿真实验结果表明,与当前的误匹配去除算法相比,本文算法不依赖于复杂的参数模型,具有较高的鲁棒性,运算速度较快,可有效去除非刚性形变图像配准过程中产生的误匹配.
推荐文章
基于特征像素统计的图像相关匹配算法
电视跟踪
相关匹配
特征像素统计
MCD
采用超像素标注匹配的交通场景几何分割方法
交通场景
超像素
几何分割
全连接条件随机场
基于超像素与BoF的运动目标跟踪算法
目标跟踪
表观模型
中层视觉线索
超像素
BoF
粒子滤波框架
基于超像素统计量的随机森林遥感图像分类
Landsat-8
随机森林
超像素
地物覆盖
简单线性迭代聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于超像素运动统计的误匹配去除方法
来源期刊 天津大学学报 学科 工学
关键词 非刚性图像配准 误匹配去除 超像素运动统计 局部运动一致性
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 147-153
页数 7页 分类号 TN911.73
字数 4063字 语种 中文
DOI 10.11784/tdxbz201812028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何凯 天津大学电气自动化与信息工程学院 42 260 8.0 14.0
2 王阳 天津大学电气自动化与信息工程学院 12 97 6.0 9.0
3 马红悦 天津大学电气自动化与信息工程学院 2 0 0.0 0.0
4 刘志国 天津大学电气自动化与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (29)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(14)
  • 参考文献(2)
  • 二级参考文献(12)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非刚性图像配准
误匹配去除
超像素运动统计
局部运动一致性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
天津大学学报
月刊
0493-2137
12-1127/N
天津大学青年公寓B座414室
chi
出版文献量(篇)
4671
总下载数(次)
14
论文1v1指导