基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统浮点型特征描述算法误匹配率高、匹配率低的问题,提出了一种基于尺度空间金字塔与AGAST(adaptive and generic accelerated segment test)快速特征提取相融合的局部二进制特征匹配算法(Agast-Adaboost local binary feature matching algorithm,ALBFMA).该算法首先构建高斯尺度空间金字塔,将AGAST与尺度空间融合并提取特征点,然后用改进的Adaboost算法对特征点进行二值描述,生成特征向量,从而提高该算法的匹配速率和匹配精度.实验结果表明:与已有算法相比,该算法具有匹配精度高的优点,并且对光照、尺度及旋转有良好的鲁棒性.
推荐文章
基于AdaBoost算法和光流匹配的实时手势识别
手势识别
AdaBoost
光流
模板匹配
基于肤色和AdaBoost算法的彩色人脸图像检测
人脸检测
肤色检测
AdaBoost
级联分类器
基于图像边缘梯度信息的图像匹配算法
图像匹配
Hausdorff距离
边缘梯度
膨胀运算
距离变换
基于色调空间的彩色图像匹配算法
彩色图像匹配
色调
序贯相似性检测
塔式分解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Agast-Adaboost的图像匹配算法
来源期刊 兰州理工大学学报 学科 工学
关键词 图像匹配 尺度空间 Adaboost 局部二进制特征
年,卷(期) 2020,(4) 所属期刊栏目 自动化技术与计算机技术
研究方向 页码范围 110-115
页数 6页 分类号 TP751.1
字数 3687字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵小强 兰州理工大学电气工程与信息工程学院 66 312 10.0 13.0
10 徐铸业 兰州理工大学电气工程与信息工程学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (38)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(9)
  • 参考文献(3)
  • 二级参考文献(6)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像匹配
尺度空间
Adaboost
局部二进制特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
兰州理工大学学报
双月刊
1673-5196
62-1180/N
大16开
甘肃省兰州市兰工坪路287号
54-72
1975
chi
出版文献量(篇)
4569
总下载数(次)
7
总被引数(次)
31466
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导