基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对于传统的非局部均值(NLM)算法,方形搜索窗口会将大量低相似度的图像块引入去噪图像的加权平均计算过程中,导致去噪图像的细节轮廓变得模糊.针对此问题,提出了利用控制核函数来获取椭圆窗口和图像块参数的自适应NLM算法.首先,根据图像的局部梯度信息和结构张量获得可描述图像局部边缘结构的椭圆方程,并由此确定搜索窗口的形状,从而将搜索窗口的搜索范围限制在与图像局部结构相一致的区域内;然后采用控制核函数获得和搜索窗口形状一致的椭圆形图像块,并结合平滑参数自适应的思想进一步增强算法效果.通过在不同噪声等级的经典灰度图中进行实验,实验结果表明,该算法相比于传统NLM算法和参数自适应的NLM算法,在客观的图像评价指标上,有着更高的PSNR和SSIM值;而在主观视觉上,随着噪声等级的提升,该算法在抑制噪声的同时,能够更好地保留住图像的高频纹理信息.
推荐文章
基于自适应搜索窗的非局部均值去噪算法
图像去噪
非局部均值算法
自适应搜索窗
局部多项式近似—置信区间交叉
采用结构自适应窗的非局部均值图像去噪算法
图像去噪
度量
结构自适应窗
估计
非局部均值
用于图像处理的自适应均值滤波算法
噪声
二阶中心矩
均值滤波
四阶累积量
噪声检测自适应窗口滤波算法
图像消噪
脉冲噪声
自适应滤波
均值滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 椭圆窗口和参数自适应的非局部均值算法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 图像去噪 非局部均值算法 椭圆搜索窗口 参数自适应
年,卷(期) 2020,(1) 所属期刊栏目 图像与视觉
研究方向 页码范围 79-89
页数 11页 分类号 TP391.41
字数 7974字 语种 中文
DOI 10.3724/SP.J.1089.2020.17425
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡靖 成都信息工程大学计算机学院 4 0 0.0 0.0
2 萧澍 成都信息工程大学计算机学院 1 0 0.0 0.0
3 王彦芳 河海大学计算机与信息学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像去噪
非局部均值算法
椭圆搜索窗口
参数自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导