基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过叠前反演获得的单参数或组合参数都有一定的流体识别能力,但如何将多种流体识别因子有效融合是目前进行流体识别的一个难题.利用人工参与进行流体性质的综合解释是目前流体识别因子融合的主要途径,但这种方法人为干扰较大,不确定性强.鉴于此,本文提出了一种基于近似支持向量机的流体识别方法.该方法首先以实际工区测井资料为依据,优选出对工区内储层所合流体特征敏感的流体识别因子作为输入参数,然后通过近似支持向量机进行流体性质的判别,实例证明该方法的识别结果客观准确,是一种可靠的流体识别方法.
推荐文章
基于融合特征与支持向量机的控制图模式识别
控制图模式识别
特征提取
原始特征
形状特征
特征融合
支持向量机
基于支持向量机的手势识别研究
手势识别
支持向量机
核函数
多分类
基于支持向量机的人脸识别研究
人脸识别
支持向量机
离散小波变换
融合Hu矩与BoF-SURF支持向量机的手势识别
手势识别
特征包模型
快速鲁棒特征
Hu不变矩
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于近似支持向量机的流体识别因子融合
来源期刊 地球物理学进展 学科 地球科学
关键词 近似支持向量机 流体识别 地震属性 储层分析
年,卷(期) 2020,(1) 所属期刊栏目 应用地球物理学Ⅰ(油气及金属矿产地球物理勘探)
研究方向 页码范围 139-144
页数 6页 分类号 P631
字数 语种 中文
DOI 10.6038/pg2020BB0517
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 文晓涛 59 576 13.0 22.0
2 杨吉鑫 6 4 1.0 2.0
3 李天 6 0 0.0 0.0
4 李雷豪 9 5 1.0 2.0
5 刘松鸣 5 0 0.0 0.0
6 李文秀 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (63)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
近似支持向量机
流体识别
地震属性
储层分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地球物理学进展
双月刊
1004-2903
11-2982/P
大16开
北京市9825信箱(朝阳区北土城西路19号中科院地质与地球物理研究所) 质与地球物理研究所办公楼113号)
1986
chi
出版文献量(篇)
5468
总下载数(次)
11
总被引数(次)
68508
论文1v1指导