基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高在线监控过程的效率,将机器学习的方法运用于统计过程控制诊断中,提出了基于遗传算法的多核函数最小二乘支持向量机的控制图模式识别方法.仿真结果表明与BP(Back Propagation)神经网络相比,在小样本的情况下,基于遗传算法的多核函数最小二乘支持向量机方法,在进行控制图模式识别时表现出模式识别率高和诊断速度快的优点.这对于实施在线监控和降低质量诊断成本,具有重要的意义.
推荐文章
基于主成分分析的最小二乘支持向量机岩性识别方法
测井解释
岩性识别
主成分分析
最小二乘支持向量机
累积方差
代价约束多核最小二乘支持向量机及其应用
代价约束
多核学习
最小二乘支持向量机
稀疏性
泡沫浮选
回收率
一类非平坦函数的多核最小二乘支持向量机的鲁棒回归算法
多核最小二乘支持向量机
非平坦函数
谱系聚类
偏最小二乘回归
鲁棒性
用于水泥熟料fCaO预测的多核最小二乘支持向量机模型
多核学习
最小二乘支持向量机
模型
优化
算法
随机扰动
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多核函数最小二乘支持向量机的控制图模式识别方法
来源期刊 工业工程与管理 学科
关键词 控制图 最小二乘支持向量机 模式识别 遗传算法 BP神经网络
年,卷(期) 2020,(5) 所属期刊栏目
研究方向 页码范围 170-174
页数 5页 分类号 O213.1
字数 语种 中文
DOI 10.19495/j.cnki.1007-5429.2020.05.021
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (4)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(1)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
控制图
最小二乘支持向量机
模式识别
遗传算法
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工业工程与管理
双月刊
1007-5429
31-1738/T
大16开
上海市华山路1954号上海交通大学
4-585
1996
chi
出版文献量(篇)
2959
总下载数(次)
9
总被引数(次)
54044
论文1v1指导