基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 现有的医学图像配准算法在处理较大非刚性形变的医学图像时,存在配准精度低和泛化能力不足的问题.针对该问题,提出结合密集残差块和生成对抗网络(generative adversarial network,GAN)的图像配准方法,用于多模态医学图像的非刚性配准.方法 将密集残差块引入到生成器,提取待配准图像对的更多高层特征,从而提高配准精度;在GAN中采用最小二乘损失代替逻辑回归构造的交叉熵损失,由于最小二乘损失的收敛条件更严格,同时能缓解梯度消失和过拟合,从而提高配准模型的稳定性;在判别器网络中引入相对平均GAN(relative average GAN,RaGAN),即在标准判别器的基础上增加一项梯度惩罚因子,降低判别器的判别误差,从而相对减少配准模型的配准误差,有助于稳定配准精度.结果 在DRIVE (digital retinal images for vessel extraction)数据集上进行训练和验证,在Sunybrook Cardiac数据集和Brain MRI数据集上进行泛化性能测试,并与几种主流医学图像非刚性配准算法进行对比实验,表明,本文配准模型在精度和泛化能力上均有一定程度的提升,相比其他方法,视网膜图像、心脏图像和脑部图像的配准Dice值分别提升了3.3%、3.0%、1.5%.结论 提出的配准方法能够获取更多高层特征信息,从而提升配准精度;同时基于最小二乘法构建损失函数并对判别器进行加强,能够使得配准模型在训练阶段快速收敛,提高了配准模型的稳定性和泛化能力,适合存在较大非刚性形变的医学图像的配准.
推荐文章
一种改进的非刚性医学图像配准算法
非刚性医学图像配准
局部仿射变换
切比雪夫滤波器
正则项
基于多层P样条和稀疏编码的非刚性医学图像配准方法
图像配准
稀疏编码
多层P样条
梯度下降法
基于掩膜优化的多模态医学图像刚性配准
医学图像处理
刚性配准
掩膜
多模态
基于互信息医学刚性图像配准方法的研究
医学图象配准
互信息
Powell算法
插值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合密集残差块和GAN变体的医学图像非刚性配准
来源期刊 中国图象图形学报 学科 工学
关键词 医学图像 非刚性配准 生成对抗网络(GAN) 密集残差块 最小二乘损失 相对平均GAN (RaGAN)
年,卷(期) 2020,(10) 所属期刊栏目 磁共振图像
研究方向 页码范围 2182-2194
页数 13页 分类号 TP391.41
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张桂梅 86 604 12.0 21.0
2 胡强 6 7 2.0 2.0
3 龚磊 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (77)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(9)
  • 参考文献(0)
  • 二级参考文献(9)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
医学图像
非刚性配准
生成对抗网络(GAN)
密集残差块
最小二乘损失
相对平均GAN (RaGAN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导