作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有深度网络人脸表情识别方法中网络训练不足,以及迁移学习冗余信息等问题,提出一种新的端到端深度神经网络框架,该框架分为面部组成模块、表征模块和分类模块3个部分,在表征模块中引入了一种新的构建函数,由卷积运算和元素点乘操作组成,可有效提高面部特征的识别能力.另外,基于面部肌肉的运动产生面部表情变化原理,设计了新的损失函数Softmax-MSEREG,使整个神经网络的学习过程规范化,保证提出的神经网络可以显式地学习特定的表情特征.实验结果表明:与其他先进的表情识别方法对比,该模型对实验室控制和野外环境下的图像适用性能更好,表情识别准确率更高.
推荐文章
基于深度学习的面部表情识别研究
深度学习
表情识别
神经网络
基于面部结构的表情识别
人脸表情识别
判别响应图拟合
联合Haar-like特征
Boosting学习
结合LBP特征和深度学习的人脸表情识别
图像处理
LBP特征
人脸检测
卷积神经网络
人脸表情识别
基于Gabor和ADABOOST的面部表情识别
面部表情识别
Gabor变换
Adaboost算法
主成分分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于面部生理特征和深度学习的表情识别方法
来源期刊 重庆理工大学学报(自然科学版) 学科 工学
关键词 人脸表情识别 卷积神经网络 损失函数 深度学习
年,卷(期) 2020,(6) 所属期刊栏目 智能技术
研究方向 页码范围 146-153
页数 8页 分类号 TP391
字数 5865字 语种 中文
DOI 10.3969/j.issn.1674-8425(z).2020.06.021
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (83)
共引文献  (13)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(12)
  • 参考文献(0)
  • 二级参考文献(12)
2015(15)
  • 参考文献(1)
  • 二级参考文献(14)
2016(16)
  • 参考文献(2)
  • 二级参考文献(14)
2017(12)
  • 参考文献(2)
  • 二级参考文献(10)
2018(12)
  • 参考文献(4)
  • 二级参考文献(8)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸表情识别
卷积神经网络
损失函数
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆理工大学学报(自然科学版)
月刊
1674-8425
50-1205/T
重庆市九龙坡区杨家坪
chi
出版文献量(篇)
7998
总下载数(次)
17
总被引数(次)
41083
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导