基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出了一种基于改进Wasserstein生成式对抗网络(De-aliasing Wasserstein Generative Adversarial Network with Gradient Penalty,DAWGAN-GP)的磁共振图像重构算法,该方法利用Wasserstein生成式对抗网络代替传统的生成式对抗网络,并结合梯度惩罚的方法提高训练速度,解决WGAN收敛缓慢问题.此外,为了有更好的重构效果,我们将感知损失,像素损失和频域损失引入至损失函数中进行网络训练.实验结果表明,对比现有的基于深度学习的磁共振图像重构算法,基于DAWGAN-GP的磁共振图像重构方法具有更好的重构效果,可获得更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更好的结构相似性(Structural Similarity Index Measure,SSIM).
推荐文章
基于奇异值分解的压缩感知核磁共振图像重构算法
压缩感知
核磁共振成像
奇异值分解
图像重构
基于黄金分割采样方法的磁共振图像重构
镜像采样
随机分布
黄金分割
磁共振图像
基于稀疏与低秩的核磁共振图像重构算法
核磁共振成像
低秩
稀疏
赤池信息量准则
奇异值分解
全变分
基于高阶和非局部全变分的核磁共振图像重构算法
核磁共振图像
高阶全变分
非局部全变分
平滑区
边缘纹理区
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DAWGAN-GP的磁共振图像重构方法研究
来源期刊 电子学报 学科 工学
关键词 磁共振 图像重构 Wasserstein生成式对抗网络 感知损失
年,卷(期) 2020,(10) 所属期刊栏目 学术论文
研究方向 页码范围 1883-1890
页数 8页 分类号 TP302
字数 语种 中文
DOI 10.3969/j.issn.0372-2112.2020.10.002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (13)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(6)
  • 参考文献(2)
  • 二级参考文献(4)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
磁共振
图像重构
Wasserstein生成式对抗网络
感知损失
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
论文1v1指导