基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用蚁群算法优化反向传播神经网络的初始权值、阈值,建立预测模型,对港口货物吞吐量进行预测.蚁群算法具有全局搜索能力,分布式计算和鲁棒性强等特点,有利于加快反向传播神经网络的收敛速度,避免易陷入局部极值的问题,提高建模精度.在港口吞吐量预测中的应用表明:蚁群算法优化BP神经网络模型、模糊神经网络预测模型、RBF预测模型及BP预测模型的平均绝对百分比误差分别为2.826%、3.734%、4.990%和6.566%;同时,蚁群算法优化BP神经网络模型收敛速度最快.
推荐文章
基于NARX神经网络的港口集装箱吞吐量预测
NARX神经网络
集装箱吞吐量
主成分分析
动态预测
基于蚁群算法优化BP神经网络的政务云网络态势预测研究
政务云
主动防御
BP神经网络
蚁群算法
态势预测
预测精度
基于时间序列的港口货物吞吐量GRNN预测模型
港口
货物吞吐量
时间序列
广义回归神经网络
预测模型
机场旅客吞吐量的人工神经网络预测方法
机场旅客吞吐量
预测
人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蚁群算法优化反向传播神经网络的港口吞吐量预测
来源期刊 计量学报 学科 工学
关键词 计量学 港口吞吐量 蚁群算法 BP神经网络 AC-BP预测模型
年,卷(期) 2020,(11) 所属期刊栏目
研究方向 页码范围 1398-1403
页数 6页 分类号 TB938.1
字数 语种 中文
DOI 10.3969/j.issn.1000-1158.2020.11.14
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴忠强 150 915 16.0 22.0
2 张立杰 68 745 15.0 25.0
3 李长安 3 1 1.0 1.0
4 卢雪琴 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (104)
共引文献  (28)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(9)
  • 参考文献(4)
  • 二级参考文献(5)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计量学
港口吞吐量
蚁群算法
BP神经网络
AC-BP预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
论文1v1指导