基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 图像修复是计算机视觉领域的研究热点之一.基于深度学习的图像修复方法取得了一定成绩,但在处理全局与局部属性联系密切的图像时难以获得理想效果,尤其在修复较大面积图像缺损时,结果的语义合理性、结构连贯性和细节准确性均有待提高.针对上述问题,提出一种基于全卷积网络,结合生成式对抗网络思想的图像修复模型.方法 基于全卷积神经网络,结合跳跃连接、扩张卷积等方法,提出一种新颖的图像修复网络作为生成器修复缺损图像;引入结构相似性(structural similarity,SSIM)作为图像修复的重构损失,从人眼视觉系统的角度监督指导模型学习,提高图像修复效果;使用改进后的全局和局部上下文判别网络作为双路判别器,对修复结果进行真伪判别,同时,结合对抗式损失,提出一种联合损失用于监督模型的训练,使修复区域内容真实自然且与整幅图像具有属性一致性.结果 为验证本文图像修复模型的有效性,在CelebA-HQ数据集上,以主观感受和客观指标为依据,与目前主流的图像修复算法进行图像修复效果对比.结果表明,本文方法在修复结果的语义合理性、结构连贯性以及细节准确性等方面均取得了进步,峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性的均值分别达到31.30 dB和90.58%.结论 本文提出的图像修复模型对图像高级语义有更好的理解,对上下文信息和细节信息把握更精准,能取得更符合人眼视觉感受的图像修复结果.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 全局与局部属性一致的图像修复模型
来源期刊 中国图象图形学报 学科 工学
关键词 图像修复 全卷积神经网络 扩张卷积 跳跃连接 对抗式损失
年,卷(期) 2020,(12) 所属期刊栏目 图像处理和编码
研究方向 页码范围 2505-2516
页数 12页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (5)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像修复
全卷积神经网络
扩张卷积
跳跃连接
对抗式损失
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导