原文服务方: 计算机应用研究       
摘要:
针对现有算法对图像边缘细节增强不足及无法有效控制各尺度信息增强程度的问题,提出了多级分解的Retinex低照度图像增强算法.该算法在Retinex分解模型和双边滤波的基础上,通过设置不同的滤波参数,获取表征图像不同尺度信息的反射分量和照度分量;通过使用指数函数对分解得到的各级反射分量进行增强,能够有效提升图像边缘细节的表达能力;通过使用S型函数对最终的照度分量进行处理,能够在提升低照度图像整体亮度的同时抑制高亮度区域;通过颜色恢复函数对增强图像进行后处理,进一步避免色彩偏差和失真的问题.实验结果表明,新算法能够改善低照度图像的视觉质量,在清晰度、信息熵、对比度等指标方面都有所提升.
推荐文章
基于Retinex的自适应非均匀低照度图像增强算法
Retinex
多尺度引导滤波器
非均匀低照度
自适应增强
一种新的低照度彩色图像增强算法
低照度
彩色图像增强
分段对数变换
边缘保持
饱和度
色调
Retinex算法
采用亮通道先验的低照度图像增强算法
图像增强算法
亮通道先验
引导滤波
自适应对数校正
HSV彩色空间
Retinex理论
改进的Retinex低照度图像增强算法研究
低照度图像
Retinex
图像增强
引导滤波
低秩分解
稀疏噪声
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多级分解的Retinex低照度图像增强算法
来源期刊 计算机应用研究 学科
关键词 双边滤波 多级分解 低照度图像增强 Retinex算法
年,卷(期) 2020,(4) 所属期刊栏目 图形图像技术
研究方向 页码范围 1204-1209
页数 6页 分类号 TP391.41
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.07.0788
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王萍 北京电子科技职业学院经济管理学院 15 40 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (11)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(3)
  • 参考文献(1)
  • 二级参考文献(2)
1997(5)
  • 参考文献(2)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(2)
  • 二级参考文献(5)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(7)
  • 参考文献(2)
  • 二级参考文献(5)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(11)
  • 参考文献(1)
  • 二级参考文献(10)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
双边滤波
多级分解
低照度图像增强
Retinex算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导