基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
终端客户推荐系统是大型制造商终端营销的一种有效工具.如何在互联网+环境下通过采集全域市场数据,设计一个寻找最佳目标客户的推荐方法成为了一项挑战.为解决这一问题,本文提出一种基于全域市场数据感知的终端客户推荐方法(GMF).即采用全域分析的思想对全国范围内的客户数据进行预处理,建立全方位,多角度的评估指标,得到目标客户价值.然后通过域子空间分解的方法,在域子空间中对数据进行分解分析,得到某一区域内的客户评价标准,将二者分析结果进行有效融合,通过计算耦合对象相似度,并筛选出最相似的TopN个数据作为最佳目标客户结果集.在大型制造商营销活动所生成的数据集上的实验结果表明:本文提出的推荐算法其性能明显优于当前主流的协同过滤算法.
推荐文章
基于Web客户因子分析的协同推荐算法
电子商务
推荐系统
协同过滤
客户
因子分析
一种基于贝叶斯网客户购物模型的商品推荐方法
Web挖掘
贝叶斯网
客户购物模型
个性化推荐
基于移动互联网客户感知的分析技术研究
电信运营商
移动互联网
客户感知
挖掘分析
基于情境感知的餐饮推荐模型设计
餐饮推荐
情境感知
协同过滤
用户兴趣
SWRL
混合推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于全域市场数据感知的终端客户推荐
来源期刊 计算机系统应用 学科
关键词 全域市场 客户价值 矩阵分解 耦合对象相似度 推荐算法
年,卷(期) 2020,(5) 所属期刊栏目 软件技术·算法
研究方向 页码范围 136-143
页数 8页 分类号
字数 7204字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何利力 浙江理工大学信息学院 93 289 8.0 13.0
2 张星 浙江理工大学信息学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
全域市场
客户价值
矩阵分解
耦合对象相似度
推荐算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导