基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
定向能量沉积过程的智能化建模有助于解决沉积制造精度低的问题.以沉积工艺参数(激光功率、送粉速率、扫描速率、喷嘴高度)为输入、熔道宽度和高度为输出设计实验,建立基于高斯径向(RBF)核函数的支持向量回归(SVR)模型,采用该模型对熔道尺寸进行预测,并采用改进的粒子群优化(PSO)算法对RBF-SVR的超参数进行自动全局寻优.结果 表明:RBF-SVR预测熔道宽度和高度的平均相对误差分别为4.58%和5.33%,小于反向传播(BP)神经网络预测的平均相对误差(6.72%和7.96%);所建模型适用于定向能量沉积熔道尺寸的预测,并能对沉积成型工艺参数的选取提供帮助.
推荐文章
基于支持向量回归的设备故障趋势预测
支持向量回归
BP神经网络
灰色模型
灰色-AR模型
故障趋势预测
基于数学模型的大功率碟形激光焊支持向量回归熔宽预测
大功率碟形激光焊
支持向量回归
熔宽预测
Boosting集成支持向量回归机的滑坡位移预测
支持向量机
Boosting集成
Bagging
滑坡位移
预测
基于小波支持向量回归的电力系统负荷预测
电力负荷
小波支持向量回归
短期预测
混沌动力系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量回归的定向能量沉积熔道尺寸预测
来源期刊 中国激光 学科 工学
关键词 激光技术 定向能量沉积 熔道尺寸预测 支持向量回归 核函数 粒子群优化
年,卷(期) 2020,(8) 所属期刊栏目 激光制造
研究方向 页码范围 91-97
页数 7页 分类号 TN249
字数 语种 中文
DOI 10.3788/CJL202047.0802007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨永强 127 1716 22.0 36.0
2 黄延禄 13 103 6.0 10.0
3 姚望 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (3)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(7)
  • 参考文献(0)
  • 二级参考文献(7)
2018(10)
  • 参考文献(3)
  • 二级参考文献(7)
2019(7)
  • 参考文献(6)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
激光技术
定向能量沉积
熔道尺寸预测
支持向量回归
核函数
粒子群优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国激光
月刊
0258-7025
31-1339/TN
大16开
上海市嘉定区清河路390号 上海800-211邮政信箱
4-201
1974
chi
出版文献量(篇)
9993
总下载数(次)
26
总被引数(次)
105193
论文1v1指导