基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
古汉语在语法和形态上与现代汉语有着本质的区别.从统计的角度出发,首先为古汉语设计一个标记集,将隐马尔可夫模型(HMM)与维特比算法相结合,以此对古汉语进行词性标注.通过对传统方法的改进,最终bigram模型和trigram模型的标注准确率分别提高到94.9%和96.5%,同时未登录词的标注精度也有显著提高.该方法应用于古汉语词性标注中,能根据古汉语的特点有效提高标注精度,并且在古汉语机器翻译等领域有广泛应用.
推荐文章
基于不同隐马尔科夫模型的图像识别方法
隐马尔科夫模型
E-HMM
图像识别
指纹识别
基于离散隐马尔科夫模型的语音识别技术
语音识别
隐马尔科夫模型
动态时间规整
人工神经网络
基于完全二阶隐马尔可夫模型的汉语词性标注
完全二阶隐马尔可夫模型
汉语词性标注
平滑算法
Viterbi算法
基于条件随机场的古汉语词义消歧研究
中文信息处理
古汉语
词义消歧
条件随机场
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于隐马尔科夫模型的古汉语词性标注
来源期刊 微型电脑应用 学科 工学
关键词 词性标注 古汉语 隐马尔科夫模型
年,卷(期) 2020,(5) 所属期刊栏目 教育探索
研究方向 页码范围 130-133
页数 4页 分类号 TP311
字数 2909字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡立生 上海交通大学电子信息与电气工程学院 54 189 7.0 10.0
2 杨新生 上海交通大学电子信息与电气工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (17)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
词性标注
古汉语
隐马尔科夫模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
论文1v1指导