原文服务方: 中国机械工程       
摘要:
针对滚动轴承故障特征提取 困难的问题,提出了一种广义精细复合多尺度样本熵(GRC-MSE)与流形学习相结合的特征提取方法.利用GRCMSE提取滚动轴承故障特征信息;采用判别式扩散映射分析(DDMA)方法对高维特征进行降维处理;将低维故障特征输入粒子群优化支持向量机多故障分类器中进行故障识别.滚动轴承故障实验分析结果表明:GRCMSE特征提取效果优于多尺度样本熵(MSE)、精细复合多尺度样本熵(RCMSE)和广义多尺度样本熵(GMSE);DDMA降维效果优于等度规映射(Isomap)和局部切空间排列(LTSA)的降维效果;GRCMSE和DDMA相结合后的滚动轴承故障识别精度达到100%.
推荐文章
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
基于LMD基本尺度熵的AP聚类滚动轴承故障诊断
局部均值分解
基本尺度熵
滚动轴承
故障诊断
AP聚类算法
基于改进HHT能量熵和SVM的滚动轴承故障诊断
希尔伯特-黄变换
能量熵
支持向量机
滚动轴承
故障诊断
基于小波包熵和ISODATA的滚动轴承故障诊断
故障诊断
滚动轴承
小波包熵
WPE-ISODATA
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 广义精细复合多尺度样本熵与流形学习相结合的滚动轴承故障诊断方法
来源期刊 中国机械工程 学科
关键词 广义精细复合多尺度样本熵 判别式扩散映射分析 故障诊断 流形学习 滚动轴承
年,卷(期) 2020,(20) 所属期刊栏目 智能制造
研究方向 页码范围 2463-2471
页数 9页 分类号 TH165.3|TN911.7
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2020.20.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚立纲 77 371 12.0 16.0
2 王振亚 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (106)
共引文献  (112)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(14)
  • 参考文献(0)
  • 二级参考文献(14)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(10)
  • 参考文献(1)
  • 二级参考文献(9)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
广义精细复合多尺度样本熵
判别式扩散映射分析
故障诊断
流形学习
滚动轴承
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导