基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
推荐系统已经应用到各行各业中,新闻推荐也应运而生.用户在阅读新闻时一般是时间序列的形式,然而,传统的新闻推荐算法很少考虑用户浏览行为的时间序列特征.因此,它并不能有效地预测用户阅读的下一篇新闻.针对这一问题,将隐马尔可夫模型融入到新闻推荐算法中,根据用户的阅读轨迹,找到用户下一时刻阅读概率最高的新闻.在此基础上,加入状态驻留时间元素,将隐马尔可夫模型的五元素扩展为六元素,以此来提高推荐准确度.为证明解决方案的有效性,与其他的新闻推荐算法进行了对比,结果显示论文算法在F1指标上约提高了14%.
推荐文章
基于改进隐马尔可夫模型的网络动态风险评估
风险评估
隐马尔可夫模型(HMM)
蚁群算法
Snort系统
基于隐马尔可夫模型的地图匹配算法
GPS
轨迹点
隐马尔可夫模型
地图匹配
基于模拟退火算法和隐马尔可夫模型的文本信息抽取
文本信息抽取
改进的模拟退火算法
二阶隐马尔可夫模型
基于隐马尔可夫模型的运动目标轨迹识别
轨迹识别
运动分析
行为模式
隐马尔可夫模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的隐马尔可夫模型的新闻推荐算法
来源期刊 计算机与数字工程 学科 工学
关键词 新闻推荐 时间序列 隐马尔可夫模型 阅读轨迹 驻留时间
年,卷(期) 2020,(10) 所属期刊栏目 算法与分析
研究方向 页码范围 2332-2337
页数 6页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.10.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周从华 46 193 7.0 11.0
2 张丹 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (4)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
新闻推荐
时间序列
隐马尔可夫模型
阅读轨迹
驻留时间
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导