基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高立体匹配的准确性与时效性,改善传统代价聚合算法计算复杂及精度不高的问题,论文提出了一种基于改进3D卷积神经网络的代价聚合算法.该方法通过运用3D卷积神经网络对由代价计算得到的代价空间进行聚合,使匹配沿着视差维度和空间维度聚合特征信息,并在此基础上将3D残差网络、3D密集连接网络引入代价聚合的计算中;最后使用视差回归对经过3D卷积处理得到的特征图进行视差精化,获得高精度的视差图.通过在标准数据集KITTI上的测试实验证明了该方法具有较高的精度与时效性.
推荐文章
基于3D卷积神经网络的视频哈希算法
深度学习
哈希算法
视频检索
基于3D卷积神经网络的脑肿瘤医学图像分割优化
脑肿瘤
医学图像分割
多模态MRI
差异信息提取
多尺度采样
3D卷积神经网络
3D-ACC:基于3D集成电路的卷积神经网络加速结构研究
3D集成电路
脉动阵列
循环分块
性能模型
基于3D卷积神经网络的肝脏自动分割方法
三维卷积神经网络
深度监督机制
图割
先验信息
肝脏分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进3D卷积神经网络的代价聚合算法
来源期刊 计算机与数字工程 学科 工学
关键词 立体匹配 3D卷积神经网络 代价聚合
年,卷(期) 2020,(9) 所属期刊栏目 算法与分析
研究方向 页码范围 2093-2096,2113
页数 5页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.09.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李航 4 1 1.0 1.0
2 宋燕 12 26 2.0 5.0
3 于修成 2 0 0.0 0.0
4 宋天中 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (9)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
立体匹配
3D卷积神经网络
代价聚合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导