基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
组织机构名识别是命名实体识别的核心任务之一,也是最困难的任务.近年来,预训练模型在中文自然语言处理领域得到广泛应用,预训练的词嵌入模型在中文命名实体识别上取得了非常好的效果,但是在组织机构名识别上还有很大的提升空间.针对这一问题,改进ELMO(embedding from language models)预训练模型,结合双向LSTM神经网络模型和条件随机场模型,去识别组织机构名.对于ELMO的改进,主要通过筛选高频机构词,然后将高频机构词加入中文字典,通过ELMO模型训练生成机构词向量和普通字向量.字向量不用考虑未登录词的问题,机构词向量引入了先验知识,结合起来可以使得生成的字词向量能够更好地表征组织机构名.实验结果表明,预训练模型的数据集相对较小时,该方法比字向量嵌入的方法有更好的效果,F1值提高了1.3%.
推荐文章
一种基于词频统计的组织机构名识别方法
统计
词频
机构名构成词
组织机构名识别
基于Tri-training半监督学习的中文组织机构名识别
中文组织机构名
半监督学习
协同训练
Tri-training
基于支持向量机方法的中文组织机构名的识别
机构名识别
支持向量机
主动学习
自动绘制树型组织机构图的一种实用算法
树型结构
组织机构图
遍历
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于改进ELMO模型的组织机构名识别方法
来源期刊 计算机技术与发展 学科 工学
关键词 ELMO模型 LSTM模型 机构词 条件随机场 组织机构名识别
年,卷(期) 2020,(11) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 25-29
页数 5页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.11.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (191)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(1)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(5)
  • 参考文献(0)
  • 二级参考文献(5)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ELMO模型
LSTM模型
机构词
条件随机场
组织机构名识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导