基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在评估胸外心脏按压加速度波形时,现有的利用加速度波形积分计算胸外心脏按压距离的方法多数存在积分漂移、误差累积的问题.在波形分割和标签修正的基础上,提出一种基于一维卷积神经网络的胸外心脏按压波形的识别算法.对滤波后的数据进行脉冲识别,使用滑动窗口模型分割识别后的脉冲得到单次按压的加速度波形,根据数据离散程度对标签进行修正,解决标签可信度低的问题,在此基础上运用学习率衰减、Adam算法等构建一维卷积神经网络模型并进行优化.实验结果表明,该算法基于一维卷积神经网络的分类正确率达到99.4%,对比传统的积分算法、BP神经网络算法提升近5%,且不受按压遮挡、电磁波干扰等因素的影响,对于胸外心脏按压评估具有良好的效果.
推荐文章
基于一维卷积神经网络的车载语音识别研究
卷积神经网络
语音识别
网络维度
卷积核
泛化性
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
基于卷积神经网络的实时环境光遮蔽计算
环境光遮蔽
蒙特卡罗采样去噪
卷积神经网络
屏幕空间
自动编码器
基于轻量级卷积神经网络的实时缺陷检测方法研究
卷积神经网络
深度可分离卷积
通道混洗
缺陷检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于一维卷积神经网络的实时心脏按压评估
来源期刊 计算机工程 学科 工学
关键词 胸外心脏按压 一维卷积神经网络 滑动窗口模型 脉冲识别与波形分割 弱监督学习策略
年,卷(期) 2020,(5) 所属期刊栏目 开发研究与工程应用
研究方向 页码范围 298-304,311
页数 8页 分类号 TP306
字数 5088字 语种 中文
DOI 10.19678/j.issn.1000-3428.0054091
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 鲍宇 中国矿业大学计算机科学与技术学院 30 83 7.0 8.0
3 杨轩 中国矿业大学计算机科学与技术学院 3 0 0.0 0.0
4 殷佳豪 中国矿业大学计算机科学与技术学院 2 0 0.0 0.0
5 刘世杰 中国矿业大学计算机科学与技术学院 2 0 0.0 0.0
8 朱紫维 中国矿业大学计算机科学与技术学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (11)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(10)
  • 参考文献(2)
  • 二级参考文献(8)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(8)
  • 参考文献(6)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
胸外心脏按压
一维卷积神经网络
滑动窗口模型
脉冲识别与波形分割
弱监督学习策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导