原文服务方: 计算机应用研究       
摘要:
针对传统推荐算法存在忽视社交网络结构紧密强度对用户信任传递的影响和缺乏社交心理解释等问题,提出基于链路预测的有向性互动影响力和用户信任的推荐算法.首先利用融合用户偏好行为和社交圈的综合相似度识别出目标用户的相似朋友圈;其次通过结合节点引力指数和有向性影响因子获得目标用户之间的有向性互动影响力,再利用由有向性互动影响力和用户评分信任得出的综合用户信任值在目标用户的相似朋友圈中寻找出值得信任的相似用户集合,有效提高了推荐的精确性,最后产生推荐.结果表明,所提推荐方法较之前的社会网络推荐算法在性能上具有显著提高.
推荐文章
基于信任和概率矩阵分解的协同推荐算法研究
推荐系统
协同过滤
信任
数据稀疏
冷启动
矩阵分解
结合个体影响力和信任传递的推荐算法
个体影响力
推荐系统
信任传递
非负矩阵分解
基于行为和社团的微博用户传播影响力分析
关系
行为
社团结构
影响力
微博网络
基于拓扑稳定性的有向网络链路预测方法
有向网络
链路预测
拓扑稳定性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于链路预测的有向互动影响力和用户信任的推荐算法
来源期刊 计算机应用研究 学科
关键词 社交网络 评分信任度 有向性互动影响力 链路预测
年,卷(期) 2020,(5) 所属期刊栏目 算法研究探讨
研究方向 页码范围 1349-1353
页数 5页 分类号 TP301.6
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.10.0801
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 倪静 上海理工大学管理学院 60 158 8.0 10.0
2 魏映婷 上海理工大学管理学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (42)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(13)
  • 参考文献(0)
  • 二级参考文献(13)
2014(11)
  • 参考文献(1)
  • 二级参考文献(10)
2015(9)
  • 参考文献(2)
  • 二级参考文献(7)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社交网络
评分信任度
有向性互动影响力
链路预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导