基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对营销新闻分类识别任务,传统方法采用的长短期记忆神经网络LSTM和卷积神经网络CNN存在分类识别率不高的问题,因此提出一种融合CNN和引入注意力机制的长短时记忆(LSTMAttention)来提高营销新闻识别分类能力.首先通过word2vec获取营销新闻文本词向量形成的矩阵,分别输入到传统机器学习分类模型中,在此基础上使用模型融合技术融合单一模型中分类效果较好的模型,最后得到融合模型和单一模型的分类结果并进行对比.实验结果显示,在基础模型LSTM引入了注意力机制之后准确率,召回率和F1值分别达到67.01%,66.07%,0.680,而CNN和LSTMAttention进行模型融合之后的准确率,召回率和F1值进一步达到了68.29%,71.27%,0.692.表明基于CNN和LSTMAttention融合之后的神经网络模型相较于单一模型,最终分类效果更好,可以达到提高营销新闻文本分类识别效果的目的.
推荐文章
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
基于事件卷积特征的新闻文本分类
文本分类
事件
卷积神经网络
自然语言处理
基于CP-CNN的中文短文本分类研究
短文本
分类
卷积神经网络
基于深度神经网络的中文新闻文本分类方法
深度神经网络
文本分类
中文新闻
自然语言处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CNN+LSTMAttention的营销新闻文本分类
来源期刊 计算机技术与发展 学科 工学
关键词 营销新闻 文本分类 卷积神经网络 注意力机制 长短期记忆神经网络
年,卷(期) 2020,(11) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 59-63
页数 5页 分类号 TP301
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.11.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘高军 41 237 7.0 15.0
2 王小宾 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (103)
共引文献  (146)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(10)
  • 参考文献(1)
  • 二级参考文献(9)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(13)
  • 参考文献(3)
  • 二级参考文献(10)
2018(16)
  • 参考文献(3)
  • 二级参考文献(13)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
营销新闻
文本分类
卷积神经网络
注意力机制
长短期记忆神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导