钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机技术与发展期刊
\
基于CNN+LSTMAttention的营销新闻文本分类
基于CNN+LSTMAttention的营销新闻文本分类
作者:
刘高军
王小宾
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
营销新闻
文本分类
卷积神经网络
注意力机制
长短期记忆神经网络
摘要:
针对营销新闻分类识别任务,传统方法采用的长短期记忆神经网络LSTM和卷积神经网络CNN存在分类识别率不高的问题,因此提出一种融合CNN和引入注意力机制的长短时记忆(LSTMAttention)来提高营销新闻识别分类能力.首先通过word2vec获取营销新闻文本词向量形成的矩阵,分别输入到传统机器学习分类模型中,在此基础上使用模型融合技术融合单一模型中分类效果较好的模型,最后得到融合模型和单一模型的分类结果并进行对比.实验结果显示,在基础模型LSTM引入了注意力机制之后准确率,召回率和F1值分别达到67.01%,66.07%,0.680,而CNN和LSTMAttention进行模型融合之后的准确率,召回率和F1值进一步达到了68.29%,71.27%,0.692.表明基于CNN和LSTMAttention融合之后的神经网络模型相较于单一模型,最终分类效果更好,可以达到提高营销新闻文本分类识别效果的目的.
暂无资源
收藏
引用
分享
推荐文章
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
基于事件卷积特征的新闻文本分类
文本分类
事件
卷积神经网络
自然语言处理
基于CP-CNN的中文短文本分类研究
短文本
分类
卷积神经网络
基于深度神经网络的中文新闻文本分类方法
深度神经网络
文本分类
中文新闻
自然语言处理
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于CNN+LSTMAttention的营销新闻文本分类
来源期刊
计算机技术与发展
学科
工学
关键词
营销新闻
文本分类
卷积神经网络
注意力机制
长短期记忆神经网络
年,卷(期)
2020,(11)
所属期刊栏目
智能、算法、系统工程
研究方向
页码范围
59-63
页数
5页
分类号
TP301
字数
语种
中文
DOI
10.3969/j.issn.1673-629X.2020.11.011
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
刘高军
41
237
7.0
15.0
2
王小宾
3
1
1.0
1.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(103)
共引文献
(146)
参考文献
(14)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1962(1)
参考文献(0)
二级参考文献(1)
1967(1)
参考文献(0)
二级参考文献(1)
1976(1)
参考文献(0)
二级参考文献(1)
1990(1)
参考文献(0)
二级参考文献(1)
1995(1)
参考文献(0)
二级参考文献(1)
1997(1)
参考文献(1)
二级参考文献(0)
1998(2)
参考文献(0)
二级参考文献(2)
2000(1)
参考文献(0)
二级参考文献(1)
2001(1)
参考文献(0)
二级参考文献(1)
2002(5)
参考文献(0)
二级参考文献(5)
2003(2)
参考文献(0)
二级参考文献(2)
2004(3)
参考文献(0)
二级参考文献(3)
2005(1)
参考文献(0)
二级参考文献(1)
2006(7)
参考文献(0)
二级参考文献(7)
2007(2)
参考文献(0)
二级参考文献(2)
2009(2)
参考文献(0)
二级参考文献(2)
2010(7)
参考文献(0)
二级参考文献(7)
2011(10)
参考文献(1)
二级参考文献(9)
2012(11)
参考文献(0)
二级参考文献(11)
2013(5)
参考文献(1)
二级参考文献(4)
2014(5)
参考文献(0)
二级参考文献(5)
2015(10)
参考文献(0)
二级参考文献(10)
2016(3)
参考文献(0)
二级参考文献(3)
2017(13)
参考文献(3)
二级参考文献(10)
2018(16)
参考文献(3)
二级参考文献(13)
2019(5)
参考文献(5)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
营销新闻
文本分类
卷积神经网络
注意力机制
长短期记忆神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
主办单位:
陕西省计算机学会
出版周期:
月刊
ISSN:
1673-629X
CN:
61-1450/TP
开本:
大16开
出版地:
西安市雁塔路南段99号
邮发代号:
52-127
创刊时间:
1991
语种:
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
期刊文献
相关文献
1.
CNN-ELM混合短文本分类模型
2.
基于事件卷积特征的新闻文本分类
3.
基于CP-CNN的中文短文本分类研究
4.
基于深度神经网络的中文新闻文本分类方法
5.
卷积神经网络CNN算法在文本分类上的应用研究
6.
基于"中文新闻信息分类与代码"文本分类
7.
基于大数据挖掘技术的文本分类研究
8.
基于免疫算法的文本分类研究
9.
文本分类技术研究
10.
文本分类技术研究
11.
基于重要事件的文本分类方法研究
12.
基于词共现的文本分类算法
13.
一种基于语义标注特征的金融文本分类方法
14.
基于LDA-wSVM模型的文本分类研究
15.
基于SVM主动学习技术的 PU 文本分类
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机技术与发展2022
计算机技术与发展2021
计算机技术与发展2020
计算机技术与发展2019
计算机技术与发展2018
计算机技术与发展2017
计算机技术与发展2016
计算机技术与发展2015
计算机技术与发展2014
计算机技术与发展2013
计算机技术与发展2012
计算机技术与发展2011
计算机技术与发展2010
计算机技术与发展2009
计算机技术与发展2008
计算机技术与发展2007
计算机技术与发展2006
计算机技术与发展2005
计算机技术与发展2004
计算机技术与发展2003
计算机技术与发展2002
计算机技术与发展2001
计算机技术与发展2020年第9期
计算机技术与发展2020年第8期
计算机技术与发展2020年第7期
计算机技术与发展2020年第6期
计算机技术与发展2020年第5期
计算机技术与发展2020年第4期
计算机技术与发展2020年第3期
计算机技术与发展2020年第2期
计算机技术与发展2020年第12期
计算机技术与发展2020年第11期
计算机技术与发展2020年第10期
计算机技术与发展2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号