基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对滚动轴承常见故障,提出利用网格搜索(GS)优化序列最小支持向量机(SM-SVM)的故障诊断方法.首先,对提取的滚动轴承振动信号进行预处理,并对其分别提取峭度指标、偏度系数、方均根值等时域统计量和小波包分解节点能量等特征,并对特征向量进行归一化和PCA降维处理.其次,利用GS算法对SM-SVM的核函数参数和惩罚因子进行优化,以提高滚动轴承故障模式识别的正确率.最后,利用MATLAB LIBSVM工具箱对滚动轴承不同故障进行模式识别,并将本方法与SM-SVM和LS-SVM方法进行了比较.结果发现,改进方法的模式识别正确率比原方法的高出5%.
推荐文章
基于ELMD与LS-SVM的滚动轴承故障诊断方法
ELMD
模式混淆
LS-SVM
滚动轴承
故障诊断
基于最小二乘映射和SVM的滚动轴承故障诊断
故障诊断
LSM
SVM
无量纲特征参量
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
基于改进HHT能量熵和SVM的滚动轴承故障诊断
希尔伯特-黄变换
能量熵
支持向量机
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用GS优化SM-SVM的滚动轴承故障诊断方法研究
来源期刊 机械设计与制造 学科 工学
关键词 故障诊断 滚动轴承 模式识别 SM-SVM GS
年,卷(期) 2020,(6) 所属期刊栏目 理论与方法研究
研究方向 页码范围 16-19
页数 4页 分类号 TH16|TP206.3|TH133.3
字数 3249字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙宇 南京理工大学机械工程学院 156 1394 18.0 28.0
2 周超 南京理工大学机械工程学院 14 63 5.0 7.0
3 曹春平 南京理工大学机械工程学院 22 228 10.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (91)
共引文献  (216)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(17)
  • 参考文献(1)
  • 二级参考文献(16)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(9)
  • 参考文献(2)
  • 二级参考文献(7)
2013(8)
  • 参考文献(3)
  • 二级参考文献(5)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
滚动轴承
模式识别
SM-SVM
GS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械设计与制造
月刊
1001-3997
21-1140/TH
大16开
沈阳市北陵大街56号
8-131
1963
chi
出版文献量(篇)
18688
总下载数(次)
40
总被引数(次)
104640
论文1v1指导