基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高水体叶绿素a预测精度和收敛速率,提出一种基于灰色关联度分析和遗传算法优化BP神经网络预测水体叶绿素a的方法.即先采用灰色关联度分析法选取合适的水质指标作为输入因子,然后优化网络隐含层的结构参数,引入遗传算法优化BP神经网络的初始权值和阈值,最后以预测太湖叶绿素a为例进行比较分析.结果 表明,优化神经网络隐含层数能进一步提高网络的预测精度、缩短训练时间;灰色关联分析-GA-BP模型相较于BP、GA-BP模型具有更高的预测精度和收敛速度,可为控制水环境监测和决策平台提供科学依据.
推荐文章
基于GA-BP算法的IGBT结温预测模型
IGBT
BP神经网络
GA-BP算法
结温预测模型
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
基于灰色关联分析与GA-BP神经网络的 拉斗铲生产能力预测
灰色关联分析
BP神经网络
遗传算法
拉斗铲生产能力
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于灰色关联分析-GA-BP模型的叶绿素a含量预测
来源期刊 水电能源科学 学科 地球科学
关键词 灰色关联法 BP神经网络 遗传算法 叶绿素a 预测
年,卷(期) 2020,(10) 所属期刊栏目 水文水资源与环境
研究方向 页码范围 25-28,147
页数 5页 分类号 X524|X83
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (16)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(6)
  • 参考文献(2)
  • 二级参考文献(4)
2019(7)
  • 参考文献(2)
  • 二级参考文献(5)
2020(3)
  • 参考文献(0)
  • 二级参考文献(3)
2020(3)
  • 参考文献(0)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
灰色关联法
BP神经网络
遗传算法
叶绿素a
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导