基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
准确的短时交通流量预测有利于主动交通控制和出行者的出行规划,文章提出了一种改进的长短期记忆模型(ILSTM)来对短时道路交通流量进行预测.LSTM是RNN的变体形式,在处理时间序列数据上具有优势,所以适合来预测短时交通流量,并通过仿真实验来验证所提方法的有效性,构建了以LSTM为基础的深度学习模型,与其它传统模型支持向量机(SVR),长短记忆模型(LSTM)进行了比较分析,并调整了模型的超参数以分析对模型性能的影响.
推荐文章
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于核学习方法的短时交通流量预测
核学习方法
短时交通流
预测
基于差分数据图和深度学习的短时交通流预测
交通流量预测
卷积神经网络
支持向量回归
数据差分
交通数据图
基于深度学习的短时交通流量预测
深度学习
短时交通流预测
LSTM
特征
SVR
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的短时道路交通流量预测研究
来源期刊 软件 学科 工学
关键词 交通流量 LSTM 时间序列 深度学习
年,卷(期) 2020,(5) 所属期刊栏目 基金项目论文
研究方向 页码范围 72-74
页数 3页 分类号 TP3
字数 1753字 语种 中文
DOI 10.3969/j.issn.1003-6970.2020.05.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王红蕾 贵州大学电气工程学院 57 132 6.0 8.0
2 郑友康 贵州大学电气工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (41)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(10)
  • 参考文献(3)
  • 二级参考文献(7)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通流量
LSTM
时间序列
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件
月刊
1003-6970
12-1151/TP
16开
北京市3108信箱
1979
chi
出版文献量(篇)
9374
总下载数(次)
40
总被引数(次)
23629
论文1v1指导