作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
互联网技术和电子信息技术的迅速发展为整个时代提供了巨大的计算能力,个性化推荐系统成为时代产物的缩影.结合常用的推荐系统核心算法,设计了一种针对个性化音乐的Apriori改进算法,此算法通过用户信息进行深度学习,利用候选矩阵压缩的方法进行推荐优化,采用准确性、召回率等参数作为评价标准.以Last.fm音乐网站的部分数据作为分析样本,对选定音乐按个性化音乐推荐方式进行试验,Apriori改进算法在准确率和召回率方面均得到优化,推荐效果更优.在考虑推荐数量的前提下,Apriori改进算法的准确率和召回率均高于Plaucount算法,而相似度方面低于Plaucount算法.
推荐文章
基于个性化特征的协同过滤推荐算法
个性化特征
协同过滤推荐
评分模型
项目属性
个性化搜索引擎推荐算法研究
推荐系统
协同过滤
单值分解
相似性
基于社区网络内容的个性化推荐算法研究
社区网络
用户聚类
内容过滤
个性化推荐
基于改进ROCK算法的个性化推荐系统研究
Web数据挖掘
聚类
ROCK算法
个性化推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的个性化音乐推荐算法研究
来源期刊 微型电脑应用 学科 教育
关键词 深度学习 推荐系统 个性化 音乐
年,卷(期) 2020,(10) 所属期刊栏目 教育探索
研究方向 页码范围 140-143
页数 4页 分类号 G643
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 余莉娟 6 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (92)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(12)
  • 参考文献(0)
  • 二级参考文献(12)
2017(7)
  • 参考文献(0)
  • 二级参考文献(7)
2018(7)
  • 参考文献(3)
  • 二级参考文献(4)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
推荐系统
个性化
音乐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
论文1v1指导