基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
鉴于数控加工机床、精密仪器等领域对滚珠丝杠功能需求、安全可靠性以及市场竞争需求日益提升的现状,对滚珠丝杆常见故障类型进行诊断研究具有重要的应用价值和指导意义.通过分析滚珠丝杆常见故障类型与原因,以其中四种故障类型为研究对象,引入自适应学习率和动量附加项因子的方法改进BP神经网络,提高网络系统的收敛速度和稳定性,并建立滚珠丝杆故障诊断网络模型.通过对不同故障类型的滚珠丝杆进行测试试验,提取发生故障的振动信号特征参数,将测试样本数据用于BP神经网络训练,并用未知故障滚珠丝杠的测试数据进行故障类型诊断.试验结果表明,该改进算法可以准确地诊断出未知滚珠丝杠故障类型;且单一样本类型故障类型诊断概率均高于90%,有效地避免故障类型误判,为解决其故障问题提供理论依据.
推荐文章
改进BP神经网络在齿轮故障诊断的应用
遗传算法
BP神经网络
故障诊断
样本训练
基于改进BP神经网络的故障诊断方法
改进BP算法
神经网络
发动机
故障诊断
基于改进的BP神经网络的柴油发动机故障诊断
柴油发动机
高压共轨
BP神经网络
LM算法
电控系统
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进BP神经网络的滚珠丝杆故障诊断研究
来源期刊 机械设计与制造 学科 工学
关键词 滚珠丝杆 BP神经网络 自适应学习率 故障诊断
年,卷(期) 2020,(6) 所属期刊栏目 数控与自动化
研究方向 页码范围 173-176
页数 4页 分类号 TH16
字数 3483字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 乔凤斌 37 149 7.0 10.0
2 林名润 6 4 2.0 2.0
3 闫大鹏 5 2 1.0 1.0
4 王杰 9 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (59)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚珠丝杆
BP神经网络
自适应学习率
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械设计与制造
月刊
1001-3997
21-1140/TH
大16开
沈阳市北陵大街56号
8-131
1963
chi
出版文献量(篇)
18688
总下载数(次)
40
总被引数(次)
104640
论文1v1指导