基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对人体模型中某些重要关节点准确定位的问题,提出了一种新型深度卷积生成对抗网络以进行静态图像中人体姿态的估计的方法.该方法采用了深度卷积的堆叠沙漏网络来准确提取图像上关键关节点的位置,该网络的生成和辨别部分被设计用于编码第一层次结构(亲本)与第二层次结构(子本)中的空间关系,并且展示了人体部位的空间层次.生成器和判别器在网络中被设计为两部分,并按照顺序连接在一起用来编码外观可能的关系,同时为人体部位存在的可能性以及身体的每个部分与其亲本部分之间的关系进行编码.在静态图像中,可以较准确地识别人体模型关键节点以及大致人体姿态.该方法在不同的数据集上进行了实验,在大部分情况下,提出的方法获得的结果优于其他几种对比方法.
推荐文章
基于生成对抗网络的遮挡表情识别
人脸表情识别
局部遮挡
人脸修复
生成对抗网络
卷积神经网络
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
生成对抗网络图像类别标签跨模态识别系统设计
生成对抗网络
图像类别标签
跨模态识别
系统设计
卷积神经网络
训练模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用改进生成对抗网络进行人体姿态识别
来源期刊 计算机工程与应用 学科 工学
关键词 卷积神经网络 生成对抗网络(GAN) 人体姿态识别 堆叠沙漏网络 层次感知
年,卷(期) 2020,(8) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 96-103
页数 8页 分类号 TP391
字数 7552字 语种 中文
DOI 10.3778/j.issn.1002-8331.1910-0386
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡军浩 中南民族大学数学与统计学学院 46 36 3.0 4.0
2 吴春梅 广西科技师范学院数学与计算机科学学院 7 3 1.0 1.0
3 尹江华 广西科技师范学院数学与计算机科学学院 5 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (29)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(7)
  • 参考文献(0)
  • 二级参考文献(7)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
生成对抗网络(GAN)
人体姿态识别
堆叠沙漏网络
层次感知
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导