基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着国家对社会公共安全的日益重视,无重叠视域监控系统已大规模的普及.行人再识别任务通过匹配不同视域摄像机下的行人目标,在当今环境下显得尤为重要.由于深度学习依赖大数据解决过拟合的特性,针对当前视频行人再识别数据量较小和学习特征单一的问题,我们提出了一种基于视频的改进行人再识别方法,该方法通过生成对抗网络去生成视频帧序列来增加样本数量和加入了行人关节点的特征信息去提升模型效率.实验结果表明,本文提出的改进方法可以有效地提高公开数据集的识别率,在PRID2011,iLIDS-VID数据集上进行实验,Rank 1分别达到了80.2%和66.3%.
推荐文章
基于生成对抗网络的遮挡表情识别
人脸表情识别
局部遮挡
人脸修复
生成对抗网络
卷积神经网络
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
应用残差生成对抗网络的路况视频帧预测模型
生成对抗网络
深度学习
自动驾驶
路况视频帧预测
生成对抗网络图像类别标签跨模态识别系统设计
生成对抗网络
图像类别标签
跨模态识别
系统设计
卷积神经网络
训练模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合生成对抗网络和姿态估计的视频行人再识别方法
来源期刊 自动化学报 学科
关键词 行人再识别 深度学习 生成对抗网络 人体姿态估计
年,卷(期) 2020,(3) 所属期刊栏目 论文与报告
研究方向 页码范围 576-584
页数 9页 分类号
字数 7757字 语种 中文
DOI 10.16383/j.aas.c180054
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 齐美彬 合肥工业大学计算机与信息学院 134 1683 20.0 34.0
3 蒋建国 合肥工业大学计算机与信息学院 245 2905 27.0 39.0
9 周华捷 合肥工业大学计算机与信息学院 5 0 0.0 0.0
10 刘一敏 合肥工业大学计算机与信息学院 4 1 1.0 1.0
11 刘皓 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人再识别
深度学习
生成对抗网络
人体姿态估计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导