原文服务方: 计算机应用研究       
摘要:
随着CNN等基于深度特征的人脸自发式微表情识别分类方法逐渐完善,相比于传统的特征提取方法更易满足应用实时性,针对微表情持续时间短、动作幅度细微,在多卷积层叠加会丢失图像中的细微信息的问题,为了完善细节信息,充分提取微表情细微特征,提出结合空洞卷积核及人脸自动校正算法,完善CNN特征提取过程,通过自动人脸矫正适应实际应用中的实时识别分类,在CASME及CASMEⅡ微表情公开数据集上完成模型训练及测试,通过损失函数方案对比提高模型鲁棒性,CASME中准确率为70.16%,CASMEⅡ中准确率为72.26%;实时识别帧率在60 fps.该方法能有效地提高微表情识别准确率,满足实时性要求,且具有较好的鲁棒性和泛化能力.
推荐文章
一种基于CNN与LSTM结合的微表情识别算法
微表情识别
深度学习
卷积神经网络
长短期记忆网络
批量归一化算法
丢弃法
一种基于3D-CNN的微表情识别算法
微表情识别
深度学习
三维卷积神经网络
批量归一化算法
丢弃法
Gabor小波与表情组合模板相结合的表情识别
表情组合模板
欧氏距离
人脸表情识别
特征矢量
结合LBP特征和深度学习的人脸表情识别
图像处理
LBP特征
人脸检测
卷积神经网络
人脸表情识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合空洞卷积的CNN实时微表情识别算法
来源期刊 计算机应用研究 学科
关键词 微表情识别 空洞卷积 表情识别 卷积神经网络
年,卷(期) 2020,(12) 所属期刊栏目 图形图像技术
研究方向 页码范围 3777-3780,3835
页数 5页 分类号 TP391.41
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.07.0273
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (46)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(12)
  • 参考文献(1)
  • 二级参考文献(11)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(16)
  • 参考文献(4)
  • 二级参考文献(12)
2017(14)
  • 参考文献(4)
  • 二级参考文献(10)
2018(6)
  • 参考文献(3)
  • 二级参考文献(3)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
微表情识别
空洞卷积
表情识别
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导