基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高现代制造业的可靠性和效率,根据轴承剩余使用寿命预测(RUL),提出了一种基于联想神经网络的轴承剩余寿命预测模型.该模型在17个轴承数据集上随机选出4个轴承的数据作为模型的验证集,剩下的13个轴承数据来训练集,并采用5折交叉验证将这13个轴承数据划分为训练集和测试集.在训练神经网络时,采用了学习率衰减机制,并对比学习率衰减机制与固定学习率的差异.试验结果表明,该模型相比LASSO、随机森林回归(RFR)、支持向量回归(SVR)、深度学习等方法在RMSE和MAE两个方面具有明显的提高.
推荐文章
基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测
锂离子电池
剩余使用寿命预测
融合神经网络
一维卷积神经网络
双向长短期记忆
管道剩余使用寿命的预测和评估
油气管道
剩余寿命
预测
评估
基于剩余使用寿命预测的替换时间和备件订购时间联合决策
预测维修
剩余使用寿命
联合决策
序贯决策
备件订购
一种基于轴承剩余寿命预测的状态维修优化决策方法
工业工程学
神经网络
贝叶斯方法
振动频谱
剩余寿命分布
维修决策
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于联想神经网络的轴承剩余使用寿命预测
来源期刊 机械设计与制造 学科 工学
关键词 联想神经网络 RUL LASSO 随机森林回归 支持向量回归 深度学习
年,卷(期) 2020,(11) 所属期刊栏目 数字化设计与制造
研究方向 页码范围 203-206
页数 4页 分类号 TH16|TH165.3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李少波 163 758 13.0 21.0
2 郑凯 7 23 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
联想神经网络
RUL
LASSO
随机森林回归
支持向量回归
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械设计与制造
月刊
1001-3997
21-1140/TH
大16开
沈阳市北陵大街56号
8-131
1963
chi
出版文献量(篇)
18688
总下载数(次)
40
总被引数(次)
104640
论文1v1指导