基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
尽管卷积神经网络在实现单帧图像超分辨率的准确性和速度方面取得一定突破,但仍然存在重建结果细节不明显,过于光滑等中心问题.针对这一中心问题,提出一种基于单帧图像的耦合生成式对抗超分辨率重建算法,定义的生成器和判别器分别采用深度残差网络和深度卷积网络,将自注意力增强卷积应用到生成器网络中,为了增强生成图像的质量和训练过程的稳定,对生成器和判别器的学习能力进行平衡,使用相对判别器计算来自对抗神经网络的损失值.主流超分辨重建算法在Set5、Set4、BSD100经典数据集上进行对比,实验结果表明,提出的算法在边缘锐化、真实性和获得更好的高频细节恢复方面能够达到更好的连续视觉效果,同时能够增强生成图像的多样性.
推荐文章
基于ResNeXt和WGAN网络的单图像超分辨率重建
单图像超分辨率重建
ResNeXt
WGAN
深度学习
单帧学习与多帧重建结合的超分辨率盲重建方法
超分辨率重建
模糊退化模型(PSF)辨识
参考信息块
模糊图像
基于非降采样 Contourlet 的单帧图像超分辨率算法
NSCT
图像插值
超分辨率重建
图像增强
图像去噪
基于深度学习的单图像超分辨率重建研究综述
单图像超分辨率重建
深度学习
密集卷积网络
生成式对抗网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 单帧图像的耦合生成式对抗超分辨率重建
来源期刊 计算机工程与应用 学科 工学
关键词 超分辨率 生成对抗网络 自注意力增强 深度残差网络 多样性
年,卷(期) 2020,(24) 所属期刊栏目 图形图像处理
研究方向 页码范围 194-200
页数 7页 分类号 TP391.41
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.1911-0095
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (137)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(6)
  • 参考文献(0)
  • 二级参考文献(6)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率
生成对抗网络
自注意力增强
深度残差网络
多样性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导