基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在目标检测领域,小目标的检测识别一直都是研究的难点,导致模型提取到的特征并不具有良好的表达能力,因此对小目标的检测结果不佳.为此,提出一种基于特征金字塔网络(FPN)的改进算法.在原有基础上增加并行分支,再融合两种不同上采样方法的特征信息以加强小目标特征的表达能力.同时,增加多阈值检测器(Cascade R-CNN)强化小目标定位能力.基于无人机航拍数据集进行实验,实验结果表明,在MS COCO数据集下,所提算法的平均精确率相比原始FPN算法提高了9.7个百分点,具有良好的检测性能.
推荐文章
基于无人机航拍图像的车辆间距检测算法
无人机航拍图像
车辆间距
高斯滤波
灰度处理
Canny算子
边缘检测
基于Faster R-CNN的无人机航拍图像小目标检测
Faster R-CNN
ResNet101
无人机
小目标检测
鸟巢
基于Faster R-CNN的航拍图像中绝缘子识别
卷积神经网络
深度学习
FasterR-CNN
航拍图像
绝缘子识别
智能电网
基于改进Faster R-CNN的无人机航拍图像目标检测
无人机图像
目标检测
Faster R-CNN算法
K-means聚类
旋转不敏感
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Cascade R-CNN的并行特征金字塔网络无人机航拍图像目标检测算法
来源期刊 激光与光电子学进展 学科
关键词 机器视觉 目标检测 深度学习 特征金字塔 级联网络
年,卷(期) 2020,(20) 所属期刊栏目 机器视觉|Machine Vision
研究方向 页码范围 294-301
页数 8页 分类号 TP751
字数 语种 中文
DOI 10.3788/LOP57.201505
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (25)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
目标检测
深度学习
特征金字塔
级联网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
激光与光电子学进展
半月刊
1006-4125
31-1690/TN
大16开
上海市嘉定区清河路390号(上海市800-211信箱)
4-179
1964
chi
出版文献量(篇)
9127
总下载数(次)
28
总被引数(次)
35767
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导