基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用德国气象局(German Bureau of Meteorology,GBM)全球中期数值天气预报产品、日本气象厅(Japan Meteorological Agency,JMA)全球中期数值天气预报产品和中国国家气象中心T639数值预报产品3个子模式,采用偏最小二乘回归(partiaI least square regres-sion,PLS)方法、超级集成(multi-model superensemble,SUP)方法和消除偏差集成平均(bias-removed ensemble mean,BREM)方法对比试验,建立2012—2013年冬季东亚区域(15°~70°N、90°~145°E)的地面气温多模式集成预报模型,并进行2014年冬季24~72 h预报时效的地面温度的多模式集成预报研究.为进一步验证集成方法的性能是否具备稳定性,以2014年2月1—9日发生的寒潮天气过程为个例进行检验分析.结果表明,多模式集成预报模型能够综合子模式优点,预报效果明显好于3个子模式,且PLS方法优于SUP、BREM集成方法.
推荐文章
偏最小二乘回归在水汽和地面气温多模式集成预报中的应用研究
偏最小二乘回归(PLS)
多模式集成预报
地面气温
比湿
基于核的偏最小二乘特征提取的最小二乘支持向量机回归方法
偏最小二乘
最小二乘支持向量机
核的偏最小二乘
回归
电力负荷预测的核偏最小二乘回归模型
核偏最小二乘
电力负荷
预测
偏最小二乘回归神经网络的矿坑涌水量预测
矿坑涌水量
偏最小二乘回归
神经网络
预报模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于偏最小二乘回归方法的东亚区域多模式温度集成预报试验
来源期刊 安徽农业科学 学科 地球科学
关键词 多模式集成预报 温度预报 偏最小二乘回归方法 超级集成方法 消除偏差集成平均方法
年,卷(期) 2020,(23) 所属期刊栏目 农业工程·农业气象
研究方向 页码范围 247-250
页数 4页 分类号 P457
字数 语种 中文
DOI 10.3969/j.issn.0517-6611.2020.23.065
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘文军 13 81 5.0 9.0
2 王莹 12 60 3.0 7.0
3 张晓鹏 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (151)
共引文献  (171)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(2)
  • 参考文献(0)
  • 二级参考文献(2)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(14)
  • 参考文献(1)
  • 二级参考文献(13)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(12)
  • 参考文献(0)
  • 二级参考文献(12)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(10)
  • 参考文献(1)
  • 二级参考文献(9)
2007(15)
  • 参考文献(0)
  • 二级参考文献(15)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(19)
  • 参考文献(2)
  • 二级参考文献(17)
2010(13)
  • 参考文献(2)
  • 二级参考文献(11)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多模式集成预报
温度预报
偏最小二乘回归方法
超级集成方法
消除偏差集成平均方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽农业科学
半月刊
0517-6611
34-1076/S
大16开
安徽省合肥市农科南路40号
26-20
1961
chi
出版文献量(篇)
78281
总下载数(次)
236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导