基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习是机器学习和人工智能研究的最新趋势,作为一个十余年来快速发展的崭新领域,越来越受到研究者的关注.卷积神经网络(CNN)模型是深度学习模型中最重要的一种经典结构,其性能在近年来深度学习任务上逐步提高.由于可以自动学习样本数据的特征表示,卷积神经网络已经广泛应用于图像分类、目标检测、语义分割以及自然语言处理等领域.首先分析了典型卷积神经网络模型为提高其性能增加网络深度以及宽度的模型结构,分析了采用注意力机制进一步提升模型性能的网络结构,然后归纳分析了目前的特殊模型结构,最后总结并讨论了卷积神经网络在相关领域的应用,并对未来的研究方向进行展望.
推荐文章
并行尺度裁切的深度卷积神经网络模型
并行卷积神经网络
识别
尺度裁切
特征提取
AlexNet
卷积神经网络在岩性识别中的应用
测井解释
深度学习
卷积神经网络
岩性识别
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络模型发展及应用
来源期刊 计算机科学与探索 学科 工学
关键词 卷积神经网络(CNN)模型 特征提取 计算机视觉 自然语言处理
年,卷(期) 2021,(1) 所属期刊栏目 综述·探索
研究方向 页码范围 27-46
页数 20页 分类号 TP391.4
字数 语种 中文
DOI 10.3778/j.issn.1673-9418.2008016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 严春满 16 23 2.0 4.0
2 王铖 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (110)
共引文献  (15)
参考文献  (33)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(1)
  • 二级参考文献(0)
1958(1)
  • 参考文献(1)
  • 二级参考文献(0)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
1972(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(2)
  • 参考文献(2)
  • 二级参考文献(0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(2)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(14)
  • 参考文献(1)
  • 二级参考文献(13)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(18)
  • 参考文献(1)
  • 二级参考文献(17)
2018(21)
  • 参考文献(1)
  • 二级参考文献(20)
2019(16)
  • 参考文献(4)
  • 二级参考文献(12)
2020(10)
  • 参考文献(10)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络(CNN)模型
特征提取
计算机视觉
自然语言处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导